Human-Competitive Lens System Design with

Evolution Strategies

Christian Gagné, Julie Beaulieu, Marc Parizeau, and Simon Thibault

2007 Humies at the GECCO, London (UK) 9 July 2007

Optics

- Optics is ubiquitous in science:
- Astronomy
- Life sciences
- Computer vision
- Remote sensing
- Optical telecommunication
- Optics is a hot topic
- In a close future, computing devices might be based on light and optical material

Modern Lens Design Process

- Complex engineering task not achievable analytically

Lens Design Process with EA

- Replace human expert in the loop by an evolutionary algorithm

Monochromatic Quartet

ILDC 1990 \#14
RMS blur spot $=0.00218 \mathrm{~mm}$
Best proposed solution

Best design with SA-ES RMS blur spot $=0.00167 \mathrm{~mm}$ 23% smaller than ILDC \#14, 23 meters long!

ILDC 1990 \#7 RMS blur spot $=0.00250 \mathrm{~mm}$ Best of second family of designs

Best design with CMA-ES RMS blur spot $=0.00393 \mathrm{~mm}$ Mid-rank at ILDC 1990

Imaging Lens System

Best design proposed by INO experts Max. 75\%-EED $=33.3 \mu \mathrm{~m}$

SA-ES
Max. 75%-EED $=11.68 \mu \mathrm{~m}$

CMA-ES
Max. 75%-EED $=12.05 \mu \mathrm{~m}$

Multiobjective Optimization

Pareto front for NSGA-II SA-ES

NSGA-II SA-ES
Max. 75%-EED $=15.0 \mu \mathrm{~m}$
Relative cost $=50.96$

New Scientific Results

Criteria D: The result is publishable in its own right as a new scientific result - independent of the fact that the result was mechanically created.

- Better results for the monochromatic quartet
- Believed that global optimum was found at ILDC 1990
- Imaging lens system results are by themselves of great interests
- Design special sensors with difficult physical constraints
- Set of non-dominated solutions, nice to select good trade-off

Problems of Indisputable Difficulty

Criteria G: The result solves a problem of indisputable difficulty in its field.

- Monochromatic quartet is a benchmark for global optimization
- Designed for not being solvable automatically with local optimization
- Imaging problem is a real-world application
- First presented as a consultancy contract to INO experts
- INO experts did their best to solve it in a real-life setting (allowed budget of 5 man-days)
- Hundreds of optical designers worldwide are earning their wages doing this kind of job

Wins Human-Machine Competitions

Criteria H: The result holds its own or wins a regulated competition involving human contestants (in the form of either live human players or human-written computer programs).

- Monochromatic quartet first proposed in a friendly competition between human experts
- Intentions very similar to the Humies, but for optical design, see (O'Shea, 1990)
- Imaging system design is a competition between INO human experts against ES
- INO is a world-class research center in optical science
- Consulting for industrial (e.g. telecommunication) and governmental (e.g. defence) organizations

Why it Matters

- Optical design is an important engineering discipline
- Specialized CAD tools with local optimization used since a long time
- Experimented and skilled optical engineers are rare
- Global optimization is not (yet) working well in CAD tools
- Efficient approach mimics modern design process
- Replace human experts by Evolutionary Computation (EC)
- Successful applications to synthetic and real-world problems
- First step to include EC-based optimization in the optical designer's toolbox

Thanks!

Christian Gagné, Julie Beaulieu, Marc Parizeau, and Simon Thibault, Human-Competitive Lens System Design with Evolution Strategies, Technical report RT-LVSN-2007-01, Laboratoire de Vision et Systèmes Numériques, Université Laval, Québec (Quebec), Canada, May 22, 2007, 25 pages, http://vision.gel.ulaval.ca/Publications/PublDetails.php?Id=674.

Simon Thibault, Christian Gagné, Julie Beaulieu, and Marc Parizeau, Evolutionary Algorithms Applied to Lens Design: Case Study and Analysis, Proc. of the SPIE International Symposium on Optical Systems Design (EOD 2005), Jena, Germany, September 12-16, 2005.

Julie Beaulieu, Christian Gagné, and Marc Parizeau, Lens System Design and Re-Engineering with Evolutionary Algorithms, Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2002), New York (NY), USA, July 9-13, 2002, p. 155-162.

