Human-Competitive Lens System Design with Evolution Strategies

Christian Gagné, Julie Beaulieu, Marc Parizeau, and Simon Thibault

2007 Humies at the GECCO, London (UK) 9 July 2007

Optics

- Optics is ubiquitous in science:
 - Astronomy
 - Life sciences
 - Computer vision
 - Remote sensing
 - Optical telecommunication
- Optics is a hot topic
 - In a close future, computing devices might be based on light and optical material

Optics Modern design process

Modern Lens Design Process

Complex engineering task not achievable analytically

Lens Design Process with EA

 Replace human expert in the loop by an evolutionary algorithm

Monochromatic Quartet

ILDC 1990 #14 RMS blur spot = 0.00218 mm Best proposed solution

Best design with SA-ES RMS blur spot = 0.00167 mm 23% smaller than ILDC #14, 23 meters long!

Best design with CMA-ES RMS blur spot = 0.00393 mm Mid-rank at ILDC 1990

Imaging Lens System

Best design proposed by INO experts Max. 75%-EED = 33.3 μ m

 $\begin{array}{l} {\rm SA-ES} \\ {\rm Max.} \ 75\%{\rm -EED} = 11.68 \ \mu{\rm m} \end{array}$

 $\label{eq:cma-es} \begin{array}{l} {\sf CMA-ES} \\ {\sf Max.} \ 75\%{\sf -EED} = 12.05 \ \mu{\rm m} \end{array}$

Multiobjective Optimization

Pareto front for NSGA-II SA-ES

 $\begin{array}{l} {\sf NSGA-II \ SA-ES} \\ {\sf Max. \ 75\%-EED} = 15.0 \ \mu {\sf m} \\ {\sf Relative \ cost} = 50.96 \end{array}$

New scientific results Difficult problems Human-machine competitions

New Scientific Results

Criteria D: The result is publishable in its own right as a new scientific result - independent of the fact that the result was mechanically created.

- Better results for the monochromatic quartet
 - Believed that global optimum was found at ILDC 1990
- Imaging lens system results are by themselves of great interests
 - Design special sensors with difficult physical constraints
 - > Set of non-dominated solutions, nice to select good trade-off

Problems of Indisputable Difficulty

Criteria G: The result solves a problem of indisputable difficulty in its field.

- Monochromatic quartet is a benchmark for global optimization
 - Designed for not being solvable automatically with local optimization
- Imaging problem is a real-world application
 - First presented as a consultancy contract to INO experts
 - INO experts did their best to solve it in a real-life setting (allowed budget of 5 man-days)
- Hundreds of optical designers worldwide are earning their wages doing this kind of job

Wins Human-Machine Competitions

Criteria H: The result holds its own or wins a regulated competition involving human contestants (in the form of either live human players or human-written computer programs).

- Monochromatic quartet first proposed in a friendly competition between human experts
 - Intentions very similar to the Humies, but for optical design, see (O'Shea, 1990)
- Imaging system design is a competition between INO human experts against ES
 - INO is a world-class research center in optical science
 - Consulting for industrial (e.g. telecommunication) and governmental (e.g. defence) organizations

Why it Matters

- Optical design is an important engineering discipline
 - Specialized CAD tools with local optimization used since a long time
 - Experimented and skilled optical engineers are rare
 - Global optimization is not (yet) working well in CAD tools
- Efficient approach mimics modern design process
 - Replace human experts by Evolutionary Computation (EC)
 - Successful applications to synthetic and real-world problems
- First step to include EC-based optimization in the optical designer's toolbox

Why it Matters

Thanks!

- Christian Gagné, Julie Beaulieu, Marc Parizeau, and Simon Thibault, Human-Competitive Lens System Design with Evolution Strategies, Technical report RT-LVSN-2007-01, Laboratoire de Vision et Systèmes Numériques, Université Laval, Québec (Quebec), Canada, May 22, 2007, 25 pages, http://vision.gel.ulaval.ca/Publications/PublDetails.php?Id=674.

Simon Thibault, Christian Gagné, Julie Beaulieu, and Marc Parizeau, **Evolutionary Algorithms Applied to Lens Design: Case Study and Analysis**, Proc. of the SPIE International Symposium on Optical Systems Design (EOD 2005), Jena, Germany, September 12-16, 2005.

Julie Beaulieu, Christian Gagné, and Marc Parizeau, Lens System Design and Re-Engineering with Evolutionary Algorithms, Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2002), New York (NY), USA, July 9-13, 2002, p. 155-162.