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Multiobjective Evolutionary Algorithms for
Electric Power Dispatch Problem
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Abstract—The potential and effectiveness of the newly developed
Pareto-based multiobjective evolutionary algorithms (MOEA) for
solving a real-world power system multiobjective nonlinear opti-
mization problem are comprehensively discussed and evaluated in
this paper. Specifically, nondominated sorting genetic algorithm,
niched Pareto genetic algorithm, and strength Pareto evolutionary
algorithm (SPEA) have been developed and successfully applied
to an environmental/economic electric power dispatch problem.
A new procedure for quality measure is proposed in this paper
in order to evaluate different techniques. A feasibility check
procedure has been developed and superimposed on MOEA to
restrict the search to the feasible region of the problem space. A
hierarchical clustering algorithm is also imposed to provide the
power system operator with a representative and manageable
Pareto-optimal set. Moreover, an approach based on fuzzy set
theory is developed to extract one of the Pareto-optimal solutions
as the best compromise one. These multiobjective evolutionary
algorithms have been individually examined and applied to the
standard IEEE 30-bus six-generator test system. Several opti-
mization runs have been carried out on different cases of problem
complexity. The results of MOEA have been compared to those
reported in the literature. The results confirm the potential and
effectiveness of MOEA compared to the traditional multiobjective
optimization techniques. In addition, the results demonstrate the
superiority of the SPEA as a promising multiobjective evolu-
tionary algorithm to solve different power system multiobjective
optimization problems.

Index Terms—Economic power dispatch, emission reduction, en-
vironmental impact, evolutionary algorithms, multiobjective opti-
mization.

I. INTRODUCTION

THE BASIC objective of economic dispatch (ED) of elec-
tric power generation is to schedule the committed gener-

ating unit outputs so as to meet the load demand at minimum
operating cost, while satisfying all unit and system equality and
inequality constraints. This makes the ED problem a large-scale
highly constrained nonlinear optimization problem. In addition,
the increasing public awareness of environmental protection and
the passage of the U.S. Clean Air Act amendments of 1990 have
forced utilities to modify their design or operational strategies
to reduce pollution and atmospheric emissions of the thermal
power plants [1].

Several strategies to reduce the atmospheric emissions have
been proposed and discussed [1]–[3]. These include installation
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of pollutant cleaning equipment, switching to low emission
fuels, replacement of the aged fuel-burners and generator
units, and emission dispatching. The first three options require
installation of new equipment and/or modification of existing
equipment, which involves considerable capital outlay and,
hence, can be considered as long-term options. The emission
dispatching option is an attractive short-term alternative in
which the emission, in addition to the fuel cost objective, is
to be minimized. Thus, the ED problem can be handled as a
multiobjective optimization problem with noncommensurable
and contradictory objectives. In recent years, this option has
received much attention [4]–[15].

Different techniques have been reported in the literature
pertaining to the environmental/economic dispatch (EED)
problem. In [4] and [5], the problem has been reduced to a
single objective problem by treating the emission as a con-
straint with a permissible limit. This formulation, however,
has a severe difficulty in getting the tradeoff relations between
cost and emission. Alternatively, minimizing the emission
has been handled as another objective in addition to usual
cost objective. Optimization procedures based on linear pro-
gramming, in which the objectives are considered one at a
time, were presented in [6]. Unfortunately, this approach does
not give any information regarding the tradeoffs involved. In
another research direction, the multiobjective EED problem
was converted to a single objective problem by linear combi-
nation of different objectives as a weighted sum [7]–[9]. The
important aspect of this weighted sum method is that a set of
noninferior solutions can be obtained by varying the weights.
Unfortunately, this requires multiple runs. Furthermore, this
method cannot be used to find Pareto-optimal solutions in
problems having a nonconvex Pareto-optimal front. To avoid
this difficulty, the -constraint method for multiobjective opti-
mization was presented in [10] and [11]. This method is based
on optimization of the most preferred objective and considering
the other objectives as constraints bounded by some allowable
levels “ .” The obvious weaknesses of this approach is that
it is time-consuming and tends to find weakly nondominated
solutions.

The recent direction is to handle both objectives simul-
taneously as competing objectives. A fuzzy multiobjective
optimization technique for the EED problem was proposed
[12]. However, the solutions produced are suboptimal and
the algorithm does not provide a systematic framework for
directing the search toward the Pareto-optimal front. A fuzzy
satisfaction-maximizing decision approach was successfully
applied to solve the biobjective EED problem [13], [14]. How-
ever, extension of the approach to include more objectives such
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as security and reliability is a very involved question. A mul-
tiobjective stochastic search technique for the multiobjective
EED problem was proposed in [15]. However, the technique is
computationally involved and time-consuming. In addition, the
genetic drift and search bias are severe problems that result in
premature convergence. Therefore, additional efforts should be
done to preserve the diversity of the nondominated solutions.

On the contrary, the studies on evolutionary algorithms have
shown that these methods can be efficiently used to eliminate
most of the above difficulties of classical methods [16]–[32].
Since they use a population of solutions in their search, multiple
Pareto-optimal solutions can be found in one single run.

Recently, three multiobjective evolutionary algorithms
(MOEAs) have been implemented and applied to the EED
problem with impressive success [33]–[37]. However, there is
a lack of comprehensive comparison among MOEAs, as these
algorithms have been implemented individually. On the other
hand, the quality and diversity of the nondominated solutions
presented in [33]–[37] have not been measured and assessed
quantitively.

In this paper, a comparative study among the MOEA tech-
niques has been carried out to assess their potential to solve
the real-world multiobjective EED problem. The EED problem
is formulated as a nonlinear constrained multiobjective opti-
mization problem where fuel cost and environmental impact
are treated as competing objectives. The potential of MOEA to
handle this problem is investigated and discussed. A new pro-
cedure for quality measure is proposed in this paper in order
to evaluate different techniques. A hierarchical clustering tech-
nique is implemented to provide the system operator with a rep-
resentative and manageable Pareto-optimal set. In addition, a
fuzzy-based mechanism is employed to extract the best com-
promise solution. Different cases with different complexity have
been considered in the study reported in this paper. The MOEA
techniques have been applied to the standard IEEE 30-bus six-
generator test system. These techniques were compared to each
other and to classical multiobjective optimization techniques as
well. The effectiveness of MOEA to solve the EED problem is
demonstrated.

II. EED PROBLEM FORMULATION

The environmental/economic dispatch problem is to mini-
mize two competing objective functions, fuel cost and emission,
while satisfying several equality and inequality constraints.
Generally the problem is formulated as follows.

A. Minimization of Fuel Cost

The generator cost curves are represented by quadratic func-
tions and the total fuel cost in ($/h) can be expressed as

(1)

where is the number of generators’; , , and are the cost
coefficients of the th generator; and is the real power output

of the th generator. is the vector of real power outputs of
generators and defined as

(2)

B. Minimization of Emission

The total emission in (ton/h) of atmospheric pollu-
tants such as sulpher oxides and nitrogen oxides
caused by the operation of fossil-fueled thermal generation can
be expressed as

(3)
where , , , , and are coefficients of the th generator
emission characteristics.

C. Constraints

1) Generation Capacity Constraint: For stable operation,
the real power output of each generator is restricted by lower
and upper limits as follows:

(4)

2) Power Balance Constraint: The total electric power gen-
eration must cover the total electric power demand and the
real power loss in transmission lines . Hence

(5)

Calculation of implies solving the load flow problem,
which has equality constraints on real and reactive power at
each bus as follows:

(6)

(7)

where ; is the number of buses; is
the reactive power generated at the th bus; and are
the th bus load real and reactive power, respectively; and

are the transfer conductance and susceptance between bus
and bus , respectively; and are the voltage magnitudes

at bus and bus , respectively; and and are the voltage
angles at bus and bus , respectively. The equality constraints
in (6) and (7) are nonlinear equations that can be solved using
Newton–Raphson method to generate a solution of the load flow
problem. During the course of solution, the real power output
of one generator, called slack generator, is left to cover the real
power loss and satisfy the equality constraint in (5). The load
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flow solution gives all bus voltage magnitudes and angles. Then,
the real power loss in transmission lines can be calculated as

(8)

where is the number of transmission lines and is the
conductance of the th line that connects bus to bus .

3) Security Constraints: For secure operation, the apparent
power flow through the transmission line is restricted by its
upper limit as follows:

(9)

It is worth mentioning that the th transmission line flow con-
necting bus to bus can be calculated as

(10)

where is the current flow from bus to bus and can be
calculated as

(11)
where is the line admittance, while is the shunt susceptance
of the line.

D. Formulation

Aggregating the objectives and constraints, the problem can
be mathematically formulated as a multiobjective optimization
problem as follows:

Minimize (12)

Subject to: (13)

(14)

where is the equality constraint representing the power bal-
ance, while is the inequality constraint representing the gen-
eration capacity and power system security.

III. MULTIOBJECTIVE OPTIMIZATION

A. Principles and Definitions

Many real-world problems involve simultaneous optimiza-
tion of several objective functions. Generally, these functions
are noncommensurable and often conflicting objectives. Multi-
objective optimization with such conflicting objective functions
gives rise to a set of optimal solutions instead of one optimal
solution. The reason for the optimality of many solutions is that
no one can be considered to be better than any other with respect
to all objective functions. These optimal solutions are known as
Pareto-optimal solutions.

A general multiobjective optimization problem consists of a
number of objectives to be optimized simultaneously and is as-
sociated with a number of equality and inequality constraints. It
can be formulated as follows:

Minimize (15)

Subject to: (16)

where is the th objective function, is a decision vector that
represents a solution, and is the number of objectives.

For a multiobjective optimization problem, any two solutions
and can have one of two possibilities: one dominates the

other or none dominates the other. In a minimization problem,
without loss of generality, a solution dominates iff the
following two conditions are satisfied:

1)

(17)

2)

(18)

If any of the above conditions is violated, the solution does
not dominate the solution . If dominates the solution ,
is called the nondominated solution within the set . The
solutions that are nondominated within the entire search space
are denoted as Pareto-optimal and constitute the Pareto-optimal
set or Pareto-optimal front.

B. Fitness Assignment

Fonseca and Fleming [16] categorized several MOEA and
compared different fitness assignment approaches. They clas-
sified these approaches to aggregating approaches, non-Pareto-
based approaches, and Pareto-based approaches.

Aggregating approaches combine the problem objectives into
a single function that is used for fitness calculation. Although
these approaches have the advantage of producing one single so-
lution, they require well-known domain knowledge that is often
not available. In addition, multiple runs are required to find a
family of nondominated solutions and to identify the Pareto-
optimal set. The most popular aggregating approaches are the
weighted-sum, goal programming, and -constrained methods
[17].

To overcome the difficulties involved in the aggregating ap-
proaches, alternative techniques based on population policies,
selection criteria, or special handling of the objectives have been
developed. These approaches are known as non-Pareto-based
approaches. The advantage of these approaches is that mul-
tiple nondominated solutions can be simultaneously evolved in
a single run. These approaches, however, are often sensitive to
the nonconvexity of Pareto-optimal sets. The most popular non-
Pareto-based approaches are the vector evaluated genetic algo-
rithm (VEGA) [18], multisexual genetic algorithm [19], and
weighted min-max approach [20].

The basic idea of the Pareto-based fitness assignment is to
find a set of solutions in the population that are nondominated
by the rest of the population. These solutions are then assigned
the highest rank and eliminated from further contention. Gener-
ally, all approaches of this class explicitly use Pareto dominance
in order to determine the reproduction probability of each in-
dividual. Some Pareto-based approaches are niched Pareto ge-
netic algorithm (NPGA) [24], nondominated sorting genetic al-
gorithm (NSGA) [23], and strength Pareto evolutionary algo-
rithm (SPEA) [25].
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C. Diversity Preservation

In general, the goal of a multiobjective optimization algo-
rithm is not only to guide the search toward the Pareto-optimal
front but also to maintain population diversity in the Pareto-op-
timal front. Unfortunately, a simple evolutionary algorithm
tends to converge toward a single solution due to selection
pressure, selection noise, and operator disruption [21]. Several
approaches have been developed in order to overcome this
problem, preserve the diversity in the population, and prevent
premature convergence. These approaches are classified as
niching techniques and nonniching techniques. Niching algo-
rithms are characterized by their capabilities of maintaining
stable subpopulations (niches).

Fitness sharing is the most frequently used niching technique.
The basic idea behind this technique is: the more individuals are
located in the neighborhood of a certain individual, the more
its fitness value is degraded. The neighborhood is defined in
terms of a distance measure and specified by the niche radius

.
Restricted mating is the most frequently used nonniching

technique. In this technique, two individuals are allowed to
mate only if they are within a certain distance. This mechanism
may avoid the formation of lethal individuals and therefore
improve the online performance. However, it does not appear
to be widely used in the field of multiobjective evolutionary
algorithms [16].

IV. EVOLUTIONARY ALGORITHMS

In general, the difficulties associated with the classical opti-
mization methods can be summarized as follows.

1) An algorithm has to be applied many times to find mul-
tiple Pareto-optimal solutions.

2) Most algorithms require some knowledge about the
problem being solved.

3) Some algorithms are sensitive to the shape of the Pareto-
optimal front.

4) The spread of Pareto-optimal solutions depends on effi-
ciency of the single objective optimizer.

Recent studies on evolutionary algorithms have shown that
these methods can be efficiently used to eliminate most of the
above difficulties. In this paper, the most efficient Pareto-based
MOEAs have been developed and implemented. Recently,
NSGA, NPGA, and SPEA have been recommended as the most
efficient multiobjective evolutionary algorithms [22].

A. Nondominated Sorted Genetic Algorithm (NSGA)

Srinivas and Deb [23] developed NSGA, in which a ranking
selection method is used to emphasize current nondominated
solutions and a niching method is used to maintain diversity in
the population. Before the selection is performed, the population
is first ranked in several steps. At first, the nondominated solu-
tions in the population are identified. These nondominated so-
lutions constitute the first nondominated front and are assigned
the same dummy fitness value. To maintain diversity in the pop-
ulation, these nondominated solutions are then shared with their
dummy fitness values. Phenotypic sharing on the decision space

is used in this technique. After sharing, these nondominated
individuals are ignored temporarily to process the rest of the
population members. The above procedure is repeated to find
the second level of nondominated solutions in the population.
Once they are identified, a dummy fitness value, which is a little
smaller than the worst shared fitness value observed in solutions
of the first nondominated set, is assigned. Thereafter, the sharing
procedure is performed among the solutions of second nondom-
ination level and shared fitness values are found as before. This
process is continued until all population members are assigned a
shared fitness value. The population is then reproduced with the
shared fitness values. A stochastic remainder selection is used
in this paper.

In the first generation, the nondominated solutions of the first
front are stored in the Pareto-optimal set. After ranking in the
subsequent generations, the Pareto-optimal set is extended with
the solutions of the first front. The nondominated solutions of
the extended set are extracted to update the Pareto-optimal set.

B. Niched Pareto Genetic Algorithm (NPGA)

Horn et al. [24] proposed a tournament selection scheme
based on Pareto dominance. Two competing individuals and a
comparison set of other individuals are picked at random from
the population. The number of individuals of the comparison
set is given by the parameter . Generally, the tournament
selection is carried out as follows. If one candidate is dominated
by the comparison set while the other is not, then the latter
will be selected for reproduction. If neither or both candidates
are dominated by the comparison set, then the winner will be
decided by sharing. Phenotypic sharing on the attribute space
is used in this technique.

C. Strength Pareto Evolutionary Algorithm (SPEA)

Zitzler and Thiele [25] presented SPEA as a potential al-
gorithm for multiobjective optimization. This technique stores
externally the individuals that represent a nondominated front
among all solutions considered so far. All individuals in the
external set participate in selection. SPEA uses the concept of
Pareto dominance in order to assign scalar fitness values to indi-
viduals in the current population. The procedure starts with as-
signing a real value in [0,1) called strength for each individual
in the Pareto-optimal set. The strength of an individual is propor-
tional to the number of individuals covered by it. The strength
of a Pareto solution is at the same time its fitness. Subsequently,
the fitness of each individual in the population is the sum of
the strengths of all external Pareto solutions by which it is cov-
ered. In order to guarantee that Pareto solutions are most likely
to be produced, one is added to the resulting value. This fitness
assignment ensures that the search is directed toward the non-
dominated solutions and, in the same time, the diversity among
dominated and nondominated solutions is maintained.

It is worth mentioning that new and revised versions of
MOEA have been presented such as NSGA-II [26], [27],
SPEA2 [28], and multiobjective particle swarm optimization
[29]. Recently, different studies in analysis, test cases, and
applications of MOEA have been discussed [30]–[32].
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V. MOEA IMPLEMENTATION

A. Reducing Pareto Set by Clustering

The Pareto-optimal set can be extremely large or even contain
an infinite number of solutions. In this case, reducing the set of
nondominated solutions without destroying the characteristics
of the tradeoff front is desirable from the decision maker’s point
of view. An average linkage based hierarchical clustering algo-
rithm [38] used by SPEA [25] is employed to reduce the Pareto
set to manageable size. It works iteratively by joining the adja-
cent clusters until the required number of groups is obtained.

B. Best Compromise Solution

Fuzzy set theory has been implemented to derive efficiently
a candidate Pareto-optimal solution for the decision makers
[39]–[41]. Upon having the Pareto-optimal set, the proposed
approach presents a fuzzy-based mechanism to extract a
Pareto-optimal solution as the best compromise solution. Due
to the imprecise nature of the decision maker’s judgment, the
th objective function of a solution in the Pareto-optimal set

is represented by a membership function defined as [39]

(19)

where and are the maximum and minimum values
of the th objective function, respectively.

For each nondominated solution , the normalized member-
ship function is calculated as

(20)

where is the number of nondominated solutions. The best
compromise solution is the one having the maximum of . As
a matter of fact, arranging all solutions in Pareto-optimal set in
descending order according to their membership function will
provide the decision maker with a priority list of nondominated
solutions. This will guide the decision maker in view of the cur-
rent operating conditions.

C. Real-Coded Genetic Algorithm

Due to difficulties of binary representation when dealing with
continuous search space with large dimensions, the proposed
approach has been implemented using real-coded genetic algo-
rithm (RCGA) [42]. A decision variable is represented by
a real number within its lower limit and upper limit , i.e.,

. The RCGA crossover and mutation operators are
described as follows.

1) Crossover: A blend crossover operator (BLX- ) has
been employed in the study reported in this paper. This oper-
ator starts by choosing randomly a number from the interval

, where and are the th
parameter values of the parent solutions and . In order
to ensure the balance between exploitation and exploration of

Fig. 1. Blend crossover operator (BLX-�).

the search space, is selected. This operator can be
depicted as shown in Fig. 1.

2) Mutation: The nonuniform mutation is employed in this
paper. In this operator, the new value of the parameter after
mutation at generation is given as

if
if

(21)

and

(22)

where is a binary random number, is a random number
, is the maximum number of generations, and is

a positive constant chosen arbitrarily. In the study reported in
this paper, was selected. This operator gives a value

such that the probability of returning a value close
to increases as the algorithm advances. This makes uniform
search in the initial stages where is small and very locally at
the later stages.

D. The Computational Flow

In this paper, the basic MOEAs are developed in order to
make them suitable for solving real-world nonlinear constrained
optimization problems. The following modifications have been
incorporated in the basic algorithms.

a) The constraint-handling approach adopted in this paper
is to restrict the search within the feasible region. There-
fore, a procedure is imposed to check the feasibility of
the initial population individuals and the generated chil-
dren through GA operations. This ensures the feasibility
of the nondominated solutions.

b) A procedure for updating the Pareto-optimal set is devel-
oped. In every generation, the nondominated solutions in
the first front are combined with the existing Pareto-op-
timal set. The augmented set is processed to extract the
nondominated solutions that represent the updated Pareto-
optimal set.

c) A fuzzy-based mechanism is employed to extract the best
compromise solution over the tradeoff curve and assist
the power system operator to adjust the generation levels
efficiently.

The solution procedure starts with generating the initial pop-
ulation at random. A feasibility check procedure has been devel-
oped and superimposed on MOEA to restrict the search to fea-
sible region. The objective functions are evaluated for each indi-
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Fig. 2. Computational flow of the developed NSGA.

vidual. The GA operations are applied and a new population is
generated. This process is repeated until the maximum number
of generations is reached. All techniques used in this paper were
implemented along with the above modifications using FOR-
TRAN language.

The computational flow charts of the developed NSGA,
NPGA, and SPEA are shown in Figs. 2–4, respectively.

E. Settings of the Proposed Approach

On all optimization runs, the population size was set at 200.
The size of the Pareto-optimal set was chosen as 25. If the
number of nondominated Pareto-optimal solutions exceeds this
bound, the hierarchical clustering technique is called. Since
the population in SPEA is augmented to include the externally
stored set for selection process, the population size in SPEA
was reduced to 175 individuals only. Crossover and mutation
probabilities were chosen as 0.9 and 0.01, respectively, in all
optimization runs. Several runs have been carried out to set the

Fig. 3. Computational flow of the developed NPGA.

parameters of each technique in order to get the best results for
fair comparison.

VI. RESULTS AND DISCUSSIONS

In this paper, the standard IEEE six-generator 30-bus test
system is considered to assess the potential of MOEAs for
solving the EED problem. The single-line diagram of this
system is shown in Fig. 5. The line data and bus data are
given in the Appendix. The values of fuel cost and emission
coefficients are given in Table I.

To demonstrate the effectiveness of the MOEA, three dif-
ferent cases have been considered as follows.

Case 1) For the purpose of comparison with the reported re-
sults, the system is considered as lossless and the se-
curity constraint is released. Therefore, the problem
constraints are the power balance constraint without

and the generation capacity constraint.
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Fig. 4. Computational flow of the developed SPEA.

Case 2) is considered in the power balance constraint,
and the generation capacity constraint is also con-
sidered.

Case 3) All constraints are considered.

For fair comparison among the developed techniques, ten dif-
ferent optimization runs have been carried out in all cases con-
sidered. Table II shows the problem complexity with all cases
in terms of the number of equality and inequality constraints.

At first, fuel cost objective and emission objective are opti-
mized individually to explore the extreme points of the tradeoff
surface in all cases. In this case, the standard GA has been imple-
mented as the problem becomes a single objective optimization
problem. The best results of cost and emission when optimized
individually for all cases are given in Table III.

Case 1: NSGA, NPGA, and SPEA have been applied to the
problem and both objectives were treated simultaneously as
competing objectives. For NPGA, the niche radius was chosen
based on the guidelines in [24], and the size of the comparison
set was determined experimentally. The algorithm was
tested several times with different starting from 5% to
50% of the population size with a step of 5%. Only a part of
the results is shown in Fig. 6 for clarity purposes. Experimental
results have shown a favorable value of at 10% for our
problem instance whereas the performance degrades for values

Fig. 5. Single-line diagram of the test system.

greater than 20%. Therefore, is set at 10% of the
population size.

The Pareto-optimal fronts of all techniques for the best opti-
mization runs are shown in Fig. 7. It is clear that the Pareto-op-
timal fronts have good diversity characteristics of the nondom-
inated solutions. It is quite clear that the problem is efficiently
solved by these techniques. The results also show that SPEA has
better diversity characteristics. The best cost and best emission
solutions obtained out of ten runs by different techniques are
given in Table IV. It is clear that SPEA gives the best cost and
best emission compared to others.

The best results of MOEA were compared to those reported
using linear programming (LP) [6] and multiobjective stochastic
search technique [15]. The comparison is shown in Table V. It
is quite evident that the MOEAs give better fuel cost results
than the traditional methods as a reduction more than 5 $/h
is observed with less level of emission in the case of SPEA.
The results also confirm the potential of multiobjective evo-
lutionary algorithms to solve real-world highly nonlinear con-
strained multiobjective optimization problems.

Case 2: With the problem complexity shown in Table II,
MOEA techniques have been implemented and compared.
Fig. 8 shows the Pareto-optimal fronts of different techniques
for the best optimization runs. It is evident that the nondom-
inated solutions obtained have good diversity characteristics.
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TABLE I
GENERATOR COST AND EMISSION COEFFICIENTS

TABLE II
PROBLEM COMPLEXITY FOR THE CASES CONSIDERED

TABLE III
BEST SOLUTIONS FOR COST AND EMISSION OPTIMIZED INDIVIDUALLY

Fig. 6. NPGA with different settings of t parameter.

The closeness of the nondominated solutions of different
techniques demonstrates good performance characteristics of
MOEA. The best solutions obtained out of ten runs by different
techniques are given in Table VI.

Case 3: MOEA techniques have been implemented, and the
Pareto-optimal fronts of different techniques for the best opti-
mization runs are shown in Fig. 9. In this case, the performance

Fig. 7. Comparison of Pareto-optimal fronts, Case 1.

of NSGA is degraded with increasing problem complexity. The
best cost and best emission solutions obtained out of ten runs
are given in Table VII.

Best Compromise Solution: The membership functions
given in (19) and (20) are used to evaluate each member of
the Pareto-optimal set for each technique. Then, the best com-
promise solution that has the maximum value of membership
function was extracted. This procedure is applied in all cases,
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TABLE IV
BEST SOLUTIONS OUT OF TEN RUNS FOR COST AND EMISSION OF MOEA, CASE 1

TABLE V
BEST FUEL COST AND EMISSION OUT OF TEN RUNS OF MOEA COMPARED TO TRADITIONAL ALGORITHMS

TABLE VI
BEST SOLUTIONS OUT OF TEN RUNS FOR COST AND EMISSION OF MOEA, CASE 2

Fig. 8. Comparison of Pareto-optimal fronts, Case 2.

and the best compromise solutions are given in Tables VIII–X
for NSGA, NPGA, and SPEA, respectively. The best compro-
mise solutions are also shown in Figs. 8–10. It is clear that there
is good agreement between SPEA and NPGA.

Fig. 9. Comparison of Pareto-optimal fronts, Case 3.

VII. A COMPARATIVE STUDY

In this study, a new procedure for quality measure is pro-
posed and compared to some measures reported in the literature
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TABLE VII
BEST SOLUTIONS OUT OF TEN RUNS FOR COST AND EMISSION OF MOEA, CASE 3

TABLE VIII
BEST COMPROMISE SOLUTIONS OF NSGA

TABLE IX
BEST COMPROMISE SOLUTIONS OF NPGA

[43]. Generally, the definition of quality in the case of multi-
objective optimization is substantially more complex than for
single objective optimization problems. This is because the op-
timization goal itself consists of the following multiple objec-
tives [43]–[45].

a) The distance of the resulting nondominated set to the
Pareto-optimal front should be minimized.

b) A good distribution of the solutions found is desirable.
c) The extent of the obtained nondominated Pareto-optimal

solutions should be maximized.

In thissection, theaboveresultsof thedifferent techniqueshave
been compiled and compared in view of the above objectives.
In order to assess the diversity characteristics of the proposed
techniques, the best fuel cost and the best emission solutions
among the obtained nondominated solutions of each technique
given in Tables IV, VI, and VII are compared to those of
individual optimization of each objective given in Table III.
This indicates how far the extreme solutions are. The agreement
and closeness of the results given in these tables are quite
evident, as the best solutions of different techniques are almost
identical. It can be concluded that the developed techniques

have satisfactory diversity characteristics for the problem under
consideration as the best solutions for individual optimization
are obtained along with other nondominated solutions in a
single run.

A performance measure of the extent of the nondominated
solutions is presented in [43]. The measure estimates the range
to which the fronts spread out. In other words, it measures
the normalized distance of the two outer solutions, i.e., the
best cost solution and the best emission solution. The average
values of the normalized distance measure over ten different
optimization runs are given in Table XI. The results show that
NPGA has the largest extent of the Pareto-optimal solutions
in Case 1, while SPEA has the largest extent in Case 2. In
Case 3, NSGA has the largest extent.

On the other hand, the set coverage metric measure [45]
for comparing the performance of different MOEA has been
examined in this study. The average values of this measure
over ten different optimization runs are given in Table XII.
It can be shown that the nondominated solutions of NSGA
do not cover any of SPEA solutions in Case 3, while those
of NSGA are approximately covered by SPEA. In addition,
NPGA nondominated solutions barely cover SPEA solutions
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TABLE X
BEST COMPROMISE SOLUTIONS OF SPEA

TABLE XI
NORMALIZED DISTANCE MEASURE OF DIFFERENT TECHNIQUES

TABLE XII
PERCENTAGE OF NONDOMINATED SOLUTIONS OF SET B COVERED BY THOSE IN SET A

Fig. 10. Pareto-optimal front of elite set of nondominated solutions, Case 1.

with a maximum coverage of 14.4%, while SPEA solutions
cover relatively higher percentages of NPGA solutions.

In this study, a new procedure for quality measure of the non-
dominated solutions obtained by different MOEA is proposed.
The main feature of the proposed procedure is that several
techniques can be compared simultaneously. The proposed
procedure starts with combining all individual nondominated
sets of all techniques to form a pool. An index to each solu-
tion is added to refer to the associated technique. Then, the
dominance conditions are applied for all solutions in the pool.
The nondominated solutions are extracted from the pool to

form an elite set of Pareto-optimal solutions obtained by all
techniques. Having their indexes, the nondominated solutions
in the elite set can be classified according to their associated
technique.

The proposed procedure has been implemented to measure the
quality of the nondominated solutions obtained in each case.
For ten different optimization runs with 25 nondominated
solutions obtained by each technique per run, the created
pool contains 750 solutions. For each case, the nondominated
solutions are extracted out of the pool and the elite set is
formed. The elite set consists of 181, 165, and 117 for Cases
1, 2, and 3, respectively. The results of the proposed quality
measure are given in Table XIII. It can be observed that
the SPEA has the majority of the elite set members in all
cases. It can be concluded that the most of the nondominated
solutions obtained by SPEA are true Pareto-optimal solutions
since approximately 71%, 78%, and 69% of the elite set size
is contributed by SPEA in Cases 1, 2, and 3 respectively.
Also, it can be seen that only one nondominated solutions
obtained by NSGA in Case 3 is a member in the elite set.
The Pareto-optimal fronts represented by the nondominated
solutions in the elite set for Cases 1, 2, and 3 are shown
in Figs. 10–12, respectively.

The average value of the normalized distance results of
the proposed measure over ten different optimization runs is
given in Table XIV. It is worth mentioning that the distance
obtained with the proposed measure is that between the outer
nondominatedsolutionsofeach techniquerepresented in theelite
set. It can be seen that the nondominated solutions obtained
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TABLE XIII
NUMBER OF PARETO-OPTIMAL SOLUTIONS OF DIFFERENT TECHNIQUES IN ELITE SET OF NONDOMINATED SOLUTIONS

TABLE XIV
NORMALIZED DISTANCE MEASURE OF DIFFERENT TECHNIQUES ON ELITE SET OF NONDOMINATED SOLUTIONS

TABLE XV
RUN TIME OF DIFFERENT ALGORITHMS

TABLE XVI
ROBUSTNESS OF MOEA FOR DIFFERENT INITIAL POPULATIONS

Fig. 11. Pareto-optimal front of elite set of nondominated solutions, Case 2.

by SPEA span over the entire Pareto-optimal front in all
cases. In general, it can be concluded that SPEA has the best
distribution of the nondominated solutions for the problem
under consideration.

With the proposed approach of extracting an elite set from
combining the nondominated solutions of all techniques, it can
be seen that the proposed measure and the normalized distance
measure are consistent and their results have a satisfactory
agreement with the simulation results. Also, the proposed
measure reflects properly the quality of the nondominated
solutions produced by each algorithm. In addition, several

Fig. 12. Pareto-optimal front of elite set of nondominated solutions, Case 3.

techniques can be compared in a single run rather than on
a one-to-one basis.

The comparison of the average value of the run time over ten
different optimization runs per generation per Pareto-optimal
solution of MOEA techniques with Case 1 is given in Table XV.
It is quiet evident that the run time of SPEA is less than
that of the other techniques.

The robustness of MOEA techniques with respect to different
initial populations has been examined in all cases considered.
Due to space limitations, the minimum, the maximum, and
the average values of the best cost and the best emission in
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Case 1 are given in Table XVI. It is clear that all techniques
exhibit satisfactory degree of robustness to initial populations.
In addition, SPEA gives better average results.

Based on the above comparisons and discussions, it can be
concluded that SPEA is better than other techniques for the
environmental/economic power dispatch optimization problem
since true Pareto-optimal solutions with satisfactory diversity
characteristics have been produced in this study.

VIII. CONCLUSION

In this paper, three multiobjective evolutionary algorithms
have been compared and successfully applied to environ-
mental/economic power dispatch problem. The problem has
been formulated as a multiobjective optimization problem with
competing economic and environmental impact objectives.
MOEAs have been compared to each other and to those
reported in the literature. In addition, a new and efficient

procedure for quality measure is proposed and compared
to some measures reported in the literature. The optimiza-
tion runs indicate that MOEAs outperform the traditional
techniques. Moreover, the SPEA has better diversity character-
istics and is more efficient when compared to other MOEAs.
The results show that evolutionary algorithms are effective
tools for handling multiobjective optimization where multiple
Pareto-optimal solutions can be found in one simulation run.

In addition, the diversity of the nondominated solutions
is preserved. It is also demonstrated that the SPEA has the
best computational time. It can be concluded that MOEA has
the potential to solve different multiobjective power systems’
optimization problems.

APPENDIX

The line and bus data of the IEEE 30-bus six-generator system
are given in Tables XVII and XVIII, respectively.

TABLE XVII
IEEE 30-BUS TEST SYSTEM LINE DATA
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TABLE XVIII
IEEE 30-BUS TEST SYSTEM BUS DATA
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