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ABSTRACT 
 
Computer models have been built for the simulation of water distribution systems since 
the mid-1960s. However, a model needs to be calibrated before it can be used for analysis 
and operational study of a real system. Model calibration is a vitally important, but time 
consuming task. Over last two decades, several approaches using optimization techniques 
have been proposed for model calibrations. Although most of the methods can make the 
model agree with field observations, few are able to achieve a good level of calibration in 
terms of determining the correct model parameters (pipe roughness coefficients, junction 
demands and valve settings). The previously developed methods appear to be lacking 
versatility for users to accurately specify calibration task given real data for a real system. 
 
This paper proposes a comprehensive and flexible framework for calibrating hydraulic 
network model. Calibration tasks can be specified for a water distribution system 
according to data availability and model application requirements. It allows a user to (1) 
flexibly choose any combination of the model parameters such as pipe roughness, 
junction demand and link (pipes, valves and pumps) operational status, (2) easily 
aggregate model parameters to reduce the problem dimension for expeditious calculation, 
and (3) consistently specify boundary conditions and junction demand loadings that are 
corresponding to field data collection. A model calibration is then defined as an implicit 
nonlinear optimization problem, which is solved by employing a powerful genetic 
algorithm (GA), a generic search paradigm based on the principles of natural evolution 
and biological reproduction. Calibration solutions are obtained by minimizing the 
discrepancy between the model predicted and the field observed values of junction 
pressures and pipe flows. With this methodology, a modeler can be fully assisted during a 
calibration process, thus it is possible to achieve a good model calibration with high level 
of confidence. As a result, calibrated models can be developed for conducting system 
analysis and operational management. Example application is presented to demonstrate 
the efficacy and robustness of the genetic-based methodology for calibrating water 
distribution model. 
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INTRODUCTION 
 
Computer models have become an essential tool for the management of water distribution 
systems around the world. There are numerous purposes for use of a computer model to 
simulate the flow conditions within a system. A model can be employed to ensure the 
adequate quantity and quality service of the potable water resource to the community, to 
evaluate the planning and design alternatives, to assess the system performance and to 
verify a operating strategy for better management of the water infrastructure system, as 
well as to be able to perform vulnerability studies to assess risks that may be presented 
and affect the water supply. A model is constructed for these purposes in which data 
describing network elements of pipes, junctions, valves, pumps, tanks and reservoirs are 
assembled in a systematic manner to predict pipe flow and junction hydraulic grade lines 
(HGL) or pressures within a water distribution system.  

Computer models that have been established over last twenty years and that are to be 
constructed in future are significant investments for water companies. To ensure a good 
investment return or correct usages of the models, the model must be capable of correctly 
simulating flow conditions encountered at the site. This is achieved by calibrating the 
models. A calibration involves the process of adjusting model characteristics and 
parameters so that the model predicted flows and pressures match actual observed field 
data to some desirable or acceptable level and is described in more detail in Walski, 
Chase and Savic (2001). 

Calibration of a water distribution model is a complicated task. There are many uncertain 
parameters that need to be adjusted to reduce the discrepancy between the model 
predictions and field observations of junction HGL and pipe discharges. Pipe roughness 
coefficients are often considered for calibration. However, there are many other 
parameters that are uncertain and affect junction HGL and pipe flow rate. To minimize 
errors in model parameters and also eliminate the compensation error of calibration 
parameters (Walski 2001), all the model parameters such as junction demand and 
operation status of pipes and valves, along with pipe roughness coefficients, should be 
considered for calibration.   

Calibrating water distribution network models relies upon field measurement data such as 
junction pressures, pipe flows, and water levels in storage facilities, valve settings and 
pump operating status (on/off) and speeds. Among all the possible field observation data, 
junction HGL and pipe flows are often used to evaluate goodness-of- fit of the model 
calibration. The other parameters of tank levels, valve settings and pump operating 
status/speed are used as boundary conditions that are recorded when collecting a set of 
calibration observation of junction pressures and pipe flow rates.  

Field observation data are measured and collected at different time of day and also 
various locations on site, which may correspond to different demand loadings and 
boundary conditions. In order for that the model simulation results more closely represent 
the observed data, the simulation results must be resulted from the same demand loading 
and boundary conditions as the observed data is collected. Thus the calibration process 
must be conducted under multiple demand loading and operating boundary conditions.  
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Traditional model calibration of a water distribution model is based on a trial and error 
procedure, by which an engineer or modeler first estimates the values of model 
parameters, then runs the model to obtain a predicted pressure and flow and finally 
compares the simulated values to the observed data.  If the predicted does not compare 
closely with the observed data, the engineer returns to the  model, makes some 
adjustments to the model parameters, and runs it again to produce a new set of simulation 
results.  This may have to be repeated many times to make sure that the model produces a 
close enough prediction of water distribution network in the real world. Thus the 
traditional calibration technique is, among other things, quite time consuming. 

In addition, a typical network representation of a water network may include hundreds or 
thousands of links and nodes. Ideally, during a water distribution model calibration 
process, the roughness coefficient is adjusted for each link, and demand adjusted for each 
node. However, only a small percentage of representative sample measurements can be 
made available for the use of model calibration, due to the limited financial and labor 
resources for data collection. Therefore, It is of utmost importance to have a 
comprehensive methodology and efficient tool that can assist modeler and engineer to 
achieve a highly accurate model under practical conditions including various model 
parameters such as pipe roughness, junction demand and link status, and also multiple 
demand and boundary conditions. It is the objective of this paper to provide a modeler 
with a calibration methodology and demonstrate a software tool in which the calibration 
is automatically optimized. These calibration results can be refined and manually 
adjusted during the calibration process. 

 
 
CALIBRATION METHODOLOGY 
 
An optimization calibrator is developed for facilitating the calibration process of a water 
distribution model. The parameters are obtained by minimizing the discrepancy between 
the model predicted and the field observed values of junction pressures (hydraulic grades) 
and pipe flows for given boundary conditions such as tank levels, control valve setting 
and pump speeds. The optimized calibration is then defined as a nonlinear optimization 
problem with three different calibration objectives. 
 
Calibration Objectives 
 
The goodness-of- fit of model calibration is evaluated by the discrepancy between the 
model simulated and field measured junction HGL and pipe flow. The goodness-of-fit 
score is calculated by using a user-specified fitness point per hydraulic head for junctions 
and fitness point per flow for pipes respectively. This allows a modeler to flexibly weight 
the evaluation of both pipe flow and junction hydraulic head. Three fitness functions are 
defined as follows. 
 
Objective Type One: Minimize the sum of difference squares 
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Objective Type Two: Minimize the sum of absolute differences 
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Objective Type Three: Minimize the maximum absolute difference 
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where Hobsnh designates the nh-th observed hydraulic grade, Hsimnh is the nh-th model 
simulated hydraulic grade, Hlossnh is the head loss at observation data point nh, Fobsnf  is 
the observed flow, Fsimnf  is model simulated flow, Hpnt notes the hydraulic head per 
fitness point while Fpnt is the flow per fitness point, NH is the number of observed 
hydraulic grades and NF is the number of observed pipe discharges, Wnh  and Wnf  
represent a normalized weighting factor for observed hydraulic grades and flows 
respectively. They are given as: 
 

Wnh  = f(Hlossnh /∑ Hlossnh )      (4) 
 

Wnf  = f(Fobsnf /∑ Fobsnf )      (5) 
 
where f( ) is a function which can be linear, square, square root, log or constant. An 
optimized calibration can be conducted by selecting one of three objectives above and the 
weighting factors between head and flow. The model parameters are calculated by using 
a genetic algorithm while minimizing the selected objective function. 
 
Genetic Algorithm Optimization 
 
Genetic algorithm (GA) is a robust search paradigm based on the principles of natural 
evolution and biological reproduction (Goldberg, 1989). For optimizing calibration of a 
water distribution model, a genetic algorithm program first generates a population of trial 
solutions of the model parameters. A hydraulic network solver program then simulates 
each trial solution. The resulting hydraulic simulation predicts the HGL (junction 
pressures) and pipe flows at a predetermined number of nodes (or data points) in the 
network.  This information is then passed back to the associated calibration module. The 
calibration module evaluates how closely the model simulation is to the observed data, 
the calibration evaluation computes a “goodness-of-fit” value, which is the discrepancy 
between the observed data and the model predicted pipe flows and junction pressures or 
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HGL, for each solution. This goodness-of-fit value is then assigned as the “fitness” for 
that solution in the genetic algorithm.  

One generation produced by the genetic algorithm is then complete. The fitness measure 
is taken into account when performing the next generation of the genetic algorithm 
operations. To find the optimal calibration solutions, fitter solutions will be selected by 
mimicking Darwin’s natural selection principal of “survival of the fittest”. The selected 
solutions are used to reproduce a next generation of calibration solutions by performing 
genetic operations. Over many generations, the solutions evolve, and the optimal or near 
optimal solutions ultimately emerge. Many successful applications of GA to solving 
model calibration have been carried out for optimized calibration of water resource 
systems (Wang 1991; Wu 1994; Babovic etc. 1994; Wu and Larsen 1996). Over last 
decade, there are numerous variations of genetic algorithms. A competent genetic 
algorithm (also called fast messy GA by Goldberg et al. 1989 and 1993), which has been 
demonstrated the most efficient GA for the optimization of a water distribution system 
(Wu & Simpson 2001), has been used for the optimized calibration. 

 
Integrated Calibration Capability 
 
GA-based Darwin Calibrator is integrated into a modeling system WaterCAD. It offers a 
modeler with the maximum flexibility and the richest functionality. With Darwin 
Calibrator as a tool, a modeler is able to calibrate a water distribution model under 
practical conditions including the combination and aggregation of the model parameters, 
multiple demand loading conditions, various boundary system conditions, manual 
adjustment and sensitivity analysis of calibration solutions. 

 
Due to the large number of pipes and junctions in a model, pipes that have the same 
physical and hydraulic characteristics are allowed to be grouped as one calibration link, 
which one new roughness coefficient or one roughness coefficient multiplier is assigned 
to all the pipes in the same group. The junctions that have the same demand patterns and 
within a same topological area can also be aggregated as one calibration junction, to 
which a same demand multiplier is calculated and assigned. Calibration parameters are 
bounded by prescribed upper and lower limits and adjusted with a user-prescribed 
incremental value. For examples, A Hazen William C value for a pipe or a group of pipes 
will be computed within a range of a minimum of 40 and maximum of 140 with an 
incremental of 5. Demand multiplier may range from 0.8 to 1.2 and increases by 0.1. 
Parameter aggregation is useful at reducing the calibration dimension, however, caution 
needs to be excised at pipe and junction grouping, which may affect the accuracy of the 
model calibration. 
 
Darwin Calibrator allows a modeler to select any combination of three types of model 
parameters pipe roughness (based on HW, DW and CM head loss equations), junction 
demand and link (pipe and/or vales) status. Roughness values can be computed as a new 
value for a group of pipes or modified by a multiplication factor. Junction demand 
multipliers are adjusted for the spatial and temporary demand variation. Link status 
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including valve and pipe are treated as binary variable that take a value of 1(OPEN) or 0 
(CLOSE). 
 
A good model calibration must be performed for multiple demand loading conditions to 
better simulate the demand variation when the observed data are collected and thus 
improve the accuracy of model calibration. Baseline demands for all the junctions are 
changed for the entire system to simulate a loading condition at a specific time. A 
junction demand can also be updated individually to calibrate the model for an extreme 
loading condition, e.g. fire flows. Boundary conditions, such as tank levels, pump speeds 
and valve settings, can be specified for each of demand loading conditions. This ensures 
that the calibration is performed to compare the observed values with simulated values at 
the same system conditions. 
 
During the model calibration process, there exist a number of solutions that produce the 
same or very close goodness-of- fit due to the greater number of calibration parameters 
than the independent observed data set. A number of top solutions is kept and reported at 
the end of a calibration run. The top solutions can be used for many purposes such as 
sensitivity study and different modeling scenarios to verify the final calibration result, 
along with sound engineering judgments.  
 
The sensitivity and verification studies can be easily conducted by using the manual 
calibration feature. The manual calibration feature allows that the calibration model 
parameters are to be set manually to the desirable values and the calibration run is 
performed without running GA optimization to evaluate how close the model simulation 
is to the field observation values. 
 
 
APPLICATION EXAMPLE 
 
Use of the calibrator can be illustrated using a simple system that captures many of the 
features of a real distribution system. The system is shown in Figure 1 below and is made 
up of old unlined cast iron pipes and new cement mortar lined ductile iron pipes. Water 
use at nodes can be described as residential or commercial depending on the type of 
customers and their diurnal water demand pattern. 
 
For this example, a set of pressure measurement is made throughout the system and fire 
flow tests are conducted at two nodes (J-10 and J-31). Flow is only measured at the main 
pump station. C-factors for the cast iron pipes are initially estimated as 90 and the ductile 
iron pipes as 130.  
 
Fitness is calculated using the minimum square error formulation above and the 
weighting given to head and flow measurements is 1 and 10 respectively. Initially, the 
model fitness is calculated as 20.1 using the initial estimates of C and demand. In general 
the simulated HGL values are too low during high flows indicating that C factors should 
be decreased.  (High fitness means high discrepancies between measured and modeled 
values. Low fitness values are the goal.) 
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Figure 1. System Used in Example Application 
 
In a manual calibration, the user is not sure what to adjust and by how much, so the C-
factor is cut in half. This overestimates roughness and head loss and the fitness values 
increase to 476.  The model produces graphs such as Figure 2 to show the relationship 
between observed and modeled heads. Obviously these C-factors are too low. 
 
The user then utilizes the Darwin calibrator to find the optimal solution by adjusting C-
factors. While this attempt reduces the Fitness function value to 4.36 but it is done by 
lowering the C-factor in the ductile iron pipe to 91 and raising the C-factor in the cast 
iron to 135. While the solution in terms of HGLs looks good, the results in terms of pipe 
roughness are not logical. Apparently, the assumption that all the error is due to C-factor 
is incorrect and something besides C-factor needs to be adjusted. (Some models only 
allow C-factor to be adjusted but Darwin is more flexible in allowing other parameters 
such as demand and pipe status to be unknowns.) 
 
The user now allows Darwin to adjust demand multipliers for the commercial and 
residential nodes in addition to pipe roughness. In this case, the model arrives at a 
solution with a fitness of 0.10 by setting the C-factors to 130 and 54 for the ductile and 
cast iron pipes and using demand multipliers of 1.5 and 1.2 for the commercial and 
residential nodes. These results agreed exactly with the roughness and demands used to 
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generate the “field data” used in the model. Figure 3 shows the agreement between model 
and observed HGL values for the correct solution. 
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Figure 2. Error Plot for Initial Manual Trial 
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Figure 3. Error Plot for Correct Solution 
 
The results discussed above were for the case where the HGL values were known to the 
nearest foot. In real systems errors of 2 to 5 ft are not uncommon. Walski (2000) 
demonstrated that when errors in measurement are of the same magnitude as head loss, 
accurate calibration may be impossible. So a run was made with the Darwin calibrator for 
the case where no fire flow data were available and Darwin found a solution with a 
fitness of 5.58. However, this solution was obtained by lowering the C-factor of the 
ductile iron pipe to an unrealistic value of 91. This illustrates the fact that optimized 
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calibration can do a good job of matching HGL values in a system, but unless the data are 
of good quality, may not do as well at estimating pipe roughness or demands. 
 
 
CONCLUSIONS 
 
The proposed approach offers a powerful tool for water distribution model calibration 
process. Multiple parameters and corresponding boundary conditions are taken into 
account to provide an accurate representation of the network.  The integrated system 
includes a software program that contains three integral parts: a genetic algorithm 
module, a hydraulic simulation module and a calibration module.  These modules interact 
to provide an optimized calibration solution. 

More specifically, the method of automatically calibrating a water distribution model 
gives a modeler a maximum flexibility at setting up a calibration under practical 
conditions. For example, a modeler can choose model parameters including the pipe 
roughness coefficient, junction demand, and pipe and valve operational status, or any 
combination of the parameters. Next, the user enters field observed data, namely amounts 
for pressure and pipe flow. The observed data can be weighted with a user-selected 
weighting function to focus the calibration on certain data points. Multiple demand and 
boundary conditions can also be simulated simultaneously for a calibration run. The 
demand loading condition can be modified globally for entire system for different times 
of day or updated for individual junctions such as fire flow testing corresponding to the 
time when the observed data is collected. Boundary conditions of storage tank levels, 
pressure control valve settings and pump operation speeds can also be taken into account. 
This improves the accuracy by providing a realistic snapshot of the network actually 
operating at each instant in time. 

Finally the efficient genetic algorithm drives the search process for locating the optimal 
and a number of near-optimal model parameter solutions. The integrated calibration 
system includes optimized calibration and also manual calibration, which essentially 
enables the calibration task to be accomplished in a speedy manner, thus improves the 
productivity of the modeling process.  
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