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Abstract 

 
Optimization tools have been developed for automatic calibration of water distribution models. The tools are often 
based upon a powerful genetic algorithm optimization and seamlessly integrated with hydraulic and water quality 
modeling systems. It provides the advanced features for engineers and modelers. In spite of the power of the GA 
modeling, some users report that the optimal calibration tool has not worked effectively for practical model 
calibration. This paper presents a case study on uncovering the causes of problems in automated calibration and 
proposes an approach for effectively applying the optimization calibration method. The case study involves a real 
water distribution system. The model is constructed by experienced modeling engineers and an optimization 
calibration tool is applied to calibrating the model. However, the initial application of the calibration tool did not 
make any improvement at all over the uncalibrated model. A detailed analysis has been conducted to diagnose the 
problems with the model calibration. This study uncovers an error prone application of the optimization-based 
calibration tool and illustrates effective procedures for applying the calibration tool to a real water distribution 
model. The procedure and steps have been found efficient at improving model calibration. They may also serve the 
general guidelines for calibrating water distribution models even without use of optimization.  
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1. INTRODCUTION 
 
A water distribution model is useful only if it is calibrated to replicate the hydraulic characteristics of a real water 
system. However, because of the large number of potential unknowns and uncertainties that exist in a water 
distribution model, it is not possible to analytically solve for model parameters. Optimization methods are proposed 
for facilitating the model calibration. The early endeavourer was made to applying linear and nonlinear optimization 
techniques to model calibration (Meredith 1983; Ormsbee & Chase 1988; Lansey and Basnet 1991). Over last 
decade many successful applications of a genetic algorithm (GA) to solving model calibration problems have been 
carried out for water resource systems. Wang (1991) applied a genetic algorithm to the calibration of a conceptual 
hydrology model. Wu (1994), Wu and Larsen (1996) presented a genetic algorithm approach for automatic 
calibration of MOUSE, an integrated hydrology and hydrodynamic modeling system (DHI 1993). Savic and Walters 
(1995) applied a genetic algorithm to the calibration of a water distribution model. Many others showed a great deal 
of promise in that GAs were robust and weren’t trapped by local minima.  There are numerous variations of genetic 
algorithms. Wu and Simpson (1996; 1997 and 2001) found that the fast messy GA (Goldberg et al. 1989 and 1993) 
has been the most efficient GA for the optimization of a water distribution system. The fast messy genetic algorithm 
has employed as an effective search algorithm for developing the evolutionary calibration methods (Wu et al. 2001; 
2002a and 200b). The essential difference among all the calibration approaches is not the GA itself, but the 
calibration framework, namely how a model calibration is formulated and implemented so that engineers are 
allowed to flexibly set up model calibration to best reflect various engineering conditions. A versatile GA-based 
optimization calibration tool is developed in Darwin Calibrator (Haestad 2002). 
 
2. OPTIMAL CALIBRATION 
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An optimal calibration method is to facilitate the calibration process under practical conditions. The method needs to 
be flexible enough to enable a modeler to perform model calibration for various calibration needs under different 
operating scenarios. Optimization technique is to automatically search for the best-fit water distribution model 
parameters including: 

1. Pipe roughness factor fi for pipe group i, all the pipes within one group will be either set to the same 
roughness coefficient or multiplied the same multiplier with the original roughness coefficients;  

2. Demand adjustment multiplier mj,t for junction group j at time step t, the demands of all the junctions 
within the same demand group are multiplied with the same adjustment multiplier; 

3. Link operation status sk,t for link k (pipes, valves and pumps) at time step t. 
The fittest parameters are obtained by minimizing the discrepancy between the model predicted and the field 
observed values of junction pressures (hydraulic grades) and pipe flows for given boundary conditions such as tank 
levels, control valve setting and pump speeds. The optimized calibration is then defined as a nonlinear optimization 
problem for a given time step t as the following. 
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Where X
r

 represents a set of model parameters, if  and if are the upper and lower limits of roughness factor for 

pipe group i, tjm ,  and tjm , are the upper and lower limits for demand adjustment multiplier for junction group j at 

time step t, NI is the number of roughness groups, HJ is the number of demand junction groups, NK is the number of 

uncertain-status links and )(XF
r

 is the objective function that measures the goodness-of-fit between the field 
observed values and the model simulated values.  
 
The objective function is defined as the fitness (also called goodness-of-fit score) or the distance between the model 
simulated and the field measured values of junction HGLs and pipe flows. In order to equivalently consider the 
contribution of both HGL and flow to the objective function, the difference between the observed and the simulated 
HGL is converted into the dimensionless fitness score by using user-specified the factor (Hpnt) of fitness point per 
unit hydraulic head. Similarly, the flow difference is also converted into the fitness score by user-specified factor 
(Qpnt) of fitness per unit flow. This permits flexible evaluation of both pipe flow and junction hydraulic head in one 
calibration run. Three fitness functions are defined as: 
 
Objective type I: minimize the sum of difference squares 
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Objective type II: minimize the sum of absolute differences 
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Objective type III: minimize the maximum absolute difference 
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where Honh(t) designates the observed hydraulic grade of the nh-th junction at time step t, Hsnh(t) is the model 
simulated hydraulic grade of the nh-th junction at time step t, Qonf (t) is the observed flow of the nf-th link at time 
step t, Qsnf(t) is the simulated flow of the nf-th link at time step t, Hpnt denotes the hydraulic head per fitness point 
while Qpnt is the flow per fitness point, NH is the number of observed hydraulic grades and NQ is the number of 
observed pipe discharges, Wnh  and Wnf  represent a normalized weighting factor for observed hydraulic grades and 
flows respectively. They are given as: 
 

Wnh  = w(Hlossnh /∑ Hlossnh )      (9) 
Wnf  = w(Qonf /∑ Qonf )       (10) 

 
where w() is a function that can be linear, square, square root, log or constant and Hlossnh is the head loss at 
observation data point nh. An optimized calibration can be conducted by selecting one of three objectives. The 
model parameters are optimized by using a genetic algorithm while minimizing the selected objective function. 
 
3. CALIBRATION STUDY 
 
The model undertaken for calibration represents a real water system, as shown in Fig. 1, containing 407 pipes, 294 
nodes, 2 wells (each is connected to a pump) and 2 storage tanks (one in the south near the wells and the other is to 
the far north of the system). A total system demand for the average day is 444.04 gpm while the total of the 
maximum day demand is 1066.22 gpm. A ratio of 2.4 is observed for the maximum day demand to average day 
demand. Static pressure, flow rate and residual pressure have been collected along with pump status (on/off) and 
tank levels for each of 14 fire flow tests (fire flow varies in a range of from 720 to 1,500 gpm. The time was not 
provided for each of the fire hydrant flow tests, which is deemed important for taking into account demand variation 
during the day. 
 
3.1 Error Prone Application 
 
The model was initially set up for applying GA-based calibration tool, the setup included: 

1. 28 usable field data sets, both static and fire flow tests are specified together with corresponding tank level 
and pump status as well as the demand adjustment to account for the flow rate at the flowing hydrant. 

2. Demand multiplier is set to 1.0; 
3. 407 pipes are grouped into six roughness groups according to the original roughness C values by the 

following criteria: 
a. C-value < 70; 
b. 70 ≤ C-value < 80; 
c. 80 ≤ C-value < 110; 
d. 110 ≤ C-value < 120; 
e. 120 ≤ C-value < 130; 
f. C-value ≥ 130; 

4. All junctions are grouped into one demand adjustment group. 
With the input as above, calibration improvement was not achieved by using the GA-based optimization calibration 
tool. An endeavor has been made to trouble shoot the model calibration. 
 
3.2 Diagnoses 
 
A comprehensive diagnoses on the model calibration was undertaken in all aspects of field data set, optimal 
calibration setup and the also the calibration steps as follows. 
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3.2.1 Data Verification 
 
The first step was taken to validate the field data including static and residual pressures as well as tank levels and 
pump statuses. Tank levels for T-South and T-North, pump status for PMP-5000 and PMP-3141 are served as 
boundary conditions for each data set, fire flow is specified as an additional demand. The main finding was that the 
pump status for some field data sets was inconsistent with the base scenario or data sheet provided. The mismatched 
pump status has been corrected according to the data sheet and also verified by performing the hydraulic run of 
corresponding scenario. However, this correction alone did not result in good calibration results although it did 
improve the goodness-of-fit between the observed values and model simulated values. Further effort has been made 
to justify roughness grouping and demand grouping. 
 
3.2.2 Roughness Grouping 
 
As mentioned earlier, 6 pipe groups were established according to the original C values. It has been noticed that the 
pipes within one group are scattered throughout the system. No individual group of pipes shows any hydraulic 
sensitivity to a field data set. In addition, 6 roughness groups represent 6 calibration variables (unknowns) that are to 
be calibrated for 14 field data sets of either static or fire flow. In this case, the number of data sets (known) is greater 
than the number of calibration parameters (unknown), so that the calibration problem is over-constrained. It restrains 
the calibration process from identifying sensible solution.  
 
Pipe grouping is provided for reducing the number of calibration variables. All the pipes within the same group will 
be applied either the same C value or same multiplier to the original C values. To effectively calibrate a hydraulic 
model, a roughness group must be carefully selected to form an equivalent hydraulic link that is sensitive to a certain 
field data set/point. Adjusting the roughness values of one roughness group should be sensitive to the field-observed 
pressure and thus it ensures that calibration adjustment contributes hydraulic head loss to the field data points. Only 
in this way will changing the roughness of a group of pipes be sensitive to the observed pressure and thus enable the 
observed to match the simulated values. Therefore, sensible C value can be achieved and good agreement between 
the observed and simulated can be obtained. The steps undertaken to identify sensitive pipes and make roughness 
group are as follows. 
 

1. Perform a steady state hydraulic run with a significant demand at a pressure data location (such as a fire 
flow testing location).  

2. Enable pipe flow direction arrows for all the pipes. 
3. Group those pipes that contribute most of the flow to the node. You may also divide them into several 

groups according to their diameters. 
 
It is highly recommended that the grouping process start with the node that is near to the water source, and then 
progressively move to the next testing node. 
 
For this particular model pipes have been regrouped by following the above procedure, starting at fire flow test F-20 
at junction J-9 as shown in Fig. 1, which is the closest to the source tank T-North.  Six pipes are aggregated into 
Roughness Group-20 including p-6, p-12, p-33, p-5357 and p-5360, which are the upstream pipes of junction J-9 
and contribute the flow (thus the headloss) to the testing node. The next fire flow test number could be fire flow test 
F-18 at J-42 or fire flow test F-17 at J-54. The calibration sequence of the rest field data sets will be fire flow test F-
19 at J-5084, F-13 at J-189, F-12 at J-213, F-15 at J-102, F-14 at J-195, F-9 at J-300, F-8 at J-5222, F-5 at J-5024, F-
6 at J-447, F-7 at J-396 and F-10 at J-309. This sequence allows you to group the pipes from the source to the 
distribution system for the filed data points. It also allows you to calibrate the model progressively for each 
roughness group.  
 
3.2.3 Demand Grouping 
 
Initial calibration setup contained one demand group that includes all the demand junctions. This essentially requires 
that the demands are adjusted or calibrated for all the nodes, including the fire flow nodes, by applying one demand 
multiplier. This is a problematic demand grouping for this case since the demand is measured and a known value at 
fire flow node. Adjusting the demand at the fire flow nodes, along with the non-fire flow nodes, just skews the 
correct loading conditions at the fire flow nodes that contribute more than 50% of the maximum-day demand in this 
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system. Thus, the fire flow nodes should be excluded from demand adjustment groups when calibrating the model 
against fire flow tests.   
 
3.3 Progressive Calibration 
 
Apart from correcting the erroneous pump operation status in field data input, insensitive roughness groups, faulty 
demand group, progressive calibration approach is further adopted as an effective procedure to demonstrate how to 
achieve good calibration results by applying optimal calibration tool. 
 
Progressive calibration is undertaken by optimizing one roughness group at one calibration run while just using the 
most sensitive field data set. It starts with the calibration of those roughness groups that are associated with the field 
data set/points near to a primary water source, then proceeds gradually with the adjacent roughness group and field 
data set. This allows the modeler to progressively calibrate the model from sources into a distribution system. A 
general procedure for conducting progressive calibration is given as: 
 

1. Create one optimized calibration run for the field data sets that are near the main water sources. 
2. Set the minimum and maximum bounds for the calibration group(s) that are sensitive to the field data 

set(s). 
3. Set the minimum and maximum bounds the same for the rest of groups, using 1.0 for un-calibrated groups 

and the calibrated value for the groups that are calibrated. The same minimum and maximum bound will 
force GA to use the bound value for the roughness group. 

4. Exclude the fire flow node from the demand group. 
5. Run optimal calibration with preferred criteria. 
6. Proceed the rest of model calibration by creating a child optimized calibration run and repeating step 2 to 

5 for the adjacent roughness group and field data sets. 
 
For this model calibration, fire flow test F-20 at junction J-9 and Roughness Group-20 were chosen as the first 
calibration run. It is identified as a good starting point since it is near to the tank T-North, the main water source 
when the hydrant at junction of J-9 is flowing. To optimize one adjustment group Roughness Group 20 using only 
field data set F-20, the minimum and maximum values for all the other roughness groups were set to 1.0. It forces 
GA to apply roughness multiplier of 1.0 to the other roughness groups. It essentially keeps the C value as it is for all 
the other pipes. A good calibration results were obtained with the minimum HGL difference of 0.02 ft between the 
observed and simulated values, roughness multiplier of 1.05 and demand multiplier of 1.05. The resulted demand 
multiplier represents the demand variation in comparing to the representative demand alternative when the field-
testing was carried out. Having calibrated F-20, the next adjacent calibration group Roughness Group-18 has been 
calibrated using field data set of fire flow test F-18 at junction J-42. During this process, the minimum and 
maximum values for roughness Group-20 were set to 1.05 while the other groups are set to 1.0. Calibration run has 
also resulted in good calibration results, 0.001 ft HGL difference and roughness multiplier of 1.1. The process has 
been repeated by generally following the progressive procedure and the calibration sequence outlined early. A child 
calibration can be created from previous calibration run. This way the model calibration progressively proceeded 
from sources into the system. It has significantly improved the calibration results as shown in Figure 2. 
 
4. CONCLUSIONS 
 
This study illustrates a fruitful calibration process from many perspectives. Although it does not intend to achieve a 
completely calibrated model, the investigation has identified and corrected the faulty pump operating status, 
insensitive roughness group and conflict demand group. It proposed an effective calibration procedure including 
generating sensible roughness adjustment grouping (pipe roughness and junction demand) and the progressive 
calibration process. The procedure and steps have been found particularly efficient at improving calibration by using 
the optimization calibration tool. They may also serve a general guideline and reference for calibrating water 
distribution models even without using optimization techniques. This study also uncovered that the optimal 
calibration method needs to be improved in its robustness to effectively handle faulty field data and efficiently avoid 
error-prone applications.  
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Figure 1 Layout of water distribution model undertaken for calibration 
 

 

 
 

Figure 2 Darwin Progressive Calibration by Creating Multi-layer Inherited Calibration Runs 
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