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1. Introduction

The performance of high-level computer vision applica-
tions is tightly coupled with the low-level vision operations
that are commonly required. Thus, it is advantageous to
have low-level feature extractors that are optimal with re-
spect to a desired performance criteria. This paper presents
a novel approach that uses Genetic Programming as a learn-
ing framework that generates a specific type of low-level
feature extractor: Interest Point Detector. The learning pro-
cess is posed as an optimization problem. The optimization
criterion is designed to promote the emergence of the de-
tectors’ geometric stability under different types of image
transformations and global separability between detected
points. This concept is represented by the operators re-
peatability rate [11]. Results prove that our approach is
effective at automatically generating low-level feature ex-
tractors. This paper presents two different evolved opera-
tors: IPGP1 and IPGP2. Their performance is comparable
with the Harris [5] operator given their excellent repeata-
bility rate. Furthermore, the learning process was able to
rediscover the DET corner detector proposed by Beaudet.

2. Related Work

Learning in computer vision is the process in which an
artificial system autonomously acquires knowledge from
training images to solve a given task. Most published work
in this area has centered around solving mid-level and high-
level vision tasks. Low-level feature extraction has received
less attention. This is primarily due to the fact that common
low-level operators have been extensively studied and are
well understood. However, evolutionary computation has
the ability to endow a learning system with the capability to
try new and uncommon image processing strategies that hu-
man designers might not consider. Learning Interest Point
(IP) operators in this way could provide researchers with
deeper insights on the problem domain. Previous work by
Ebner [2] poses IP detection as an optimization problem at-
tempting to evolve the Moravec operator [7] using Genetic

Programming (GP). The author reports a 15% error com-
pared to Moravec. However, there is not evidence that this is
a proper performance metric. A second paper by Ebner [3],
presents an evolved operator that is optimized for optical
flow estimation. Despite the fact that [3] showed promis-
ing results, the optimization criteria used does not guaran-
tee generality for the operator. The work presented in this
paper overcomes these limitations by using GP to evolve a
computer function that optimizes a standard computer vi-
sion performance metric for IP detectors.

3. Interest Point Operators

IP detection is a by product of research devoted to cor-
ner detection in images. Corner detectors are commonly
classified in three main classes: Contour based methods,
Parametric model based methods [9] and Image intensity
based methods [7, 1, 4, 5]. Corner detectors that operate
directly on intensity images are referred to as IP detectors.
These operators define a function that extracts a cornerness
measure for each pixel in an image. This generates a new
image known as the corner response image and points with
the highest cornerness response are selected. Points that
conform to the geometric concept of a ”corner”, are not
exclusively extracted by common IP operators. They reg-
ularly extract points where image intensity variations are
high. These type of points are better understood as ”inter-
esting points”. Early IP detectors include Moravec [7] and
Beaudet [1]. Extending the work of Moravec, Harris and
Stephens [5], and Forstner [4] use the second moment ma-
trix around each point to derive their corner response func-
tion. For a more thorough review of interest point and cor-
ner detectors we recommend [11] and [9] respectively.

3.1. Interest Point Operator Performance

Computer vision applications require local image fea-
tures that are simple to detect and show geometric stabil-
ity image transformations. Such transformations include:
translation, rotation, illumination change, scale change and



affine transformations. Of the previous list of transforma-
tions, interest points are only suitable for robust detection
in the presence of the first three. Schmid et. al. [11] es-
tablished the repeatability as the quintessential quantifica-
tion of a detectors performance under different image trans-
formations. However, this measure only characterizes the
tractability of interest points and it fails to consider other
important and desirable characteristics such as global sepa-
rability and distinctiveness. Schmid et. al. propose a metric
for information content around an IP, but fail to generalize
it by using local descriptors based on local jets.

3.2. Repeatability

A point x1 detected in image I1 is repeated in image Ii

if the corresponding point xi is detected in image Ii [11].
In the case of planar scenes a relation between points x1

and xi can be established with the homography H1,i where
xi = H1,ix1. The repeatability rate measures the number
of repeated points between both images, with respect to the
total number of detected points. Both repeated and detected
points are only counted if they lie in the common parts of
I1 and Ii. Detection error is considered by defining that a
point is detected at xi if it lies within a given neighborhood
of xi of size ε. The set of point pairs (xc

1, x
c
i ) that lie in the

common part of both images and correspond within an error
ε is:

Ri (ε) = {(xc
1, x

c
i ) |dist (H1,ix

c
1, x

c
i ) < ε} (1)

The repeatability rate ri (ε) at image Ii is:

ri (ε) =
|Ri (ε) |

min (γ1, γi)
(2)

where γ1 = | {xc
1} | and γi = | {xc

i} | are the total number
of points detected in image I1 and Ii [11].

4. Genetic Programming

The modern concept of Genetic Programming (GP) was
formalized by John Koza [6]. Koza presented GP as an au-
tomated process that used simulated evolution to generate
software functions that represent candidate solutions to a
given problem. These software functions are represented by
individuals in a GP population. Individuals are coded with
a tree representation. Tree nodes contain primitive func-
tions taken from a finite set F . Tree leaves contain input
elements know as terminals taken from a finite set T . Each
tree takes terminal elements as input and generates an out-
put according to the node functions. Fitness is assigned to
an individual x according to a performance measure f (x)
that compares each individuals output with the desired out-
put that solves a specific task. GP uses standard genetic

operators such as mutation and crossover to generate new
individuals in the simulated evolutionary process. After a
certain termination criteria is met the evolving process is
halted and the GP returns the fittest individual found.

5. Outline of our Approach

Each individual in the GP population represents a can-
didate IP operator. Fitness assignment is proportional to its
mean repeatability rate rJ (ε) computed for a set J = {Ii}
of n training images, where i = 1...n. A base image Ii is
used to compute the repeatability on all other images in J .
However, the GP search could easily get lost in unwanted
maxima. For example, GP could generate individuals that
extract useless points clustered in textureless regions and
still have high repeatability rate. Moreover, the training im-
ages used have highly textured regions distributed across
the image plane. Hence, a good detector should extract uni-
formly distributed points. Consequently, three other terms
were incorporated to the fitness function and combined in a
multiplicative way:

f (x) = rJ (ε) · φα
x · φβ

y · N δ
% (3)

where φx =
1

1 + e−a(Hx−c)
and φy =

1
1 + e−a(Hy−c)

are sigmoidal functions used to promote point disper-
sion along the x and y directions. The term Hx =
−∑

x P (x)log2 [P (x)] and Hy = −∑
y P (y)log2 [P (y)]

represent the entropy value of the spatial distribution of de-
tected interest points along each direction, with P (x) and
P (y) approximated by the histogram of interest point lo-
calizations. Moreover, because of the logarithmic nature
of the entropy function, φx and φy are set to promote en-
tropy values lying in a very small range. The final term
N% = requestedpoints

extractedpoints , is a penalizing factor that reduces
the fitness value for detectors that return less than the total
number of requested points. Finally, α, β and δ control the
amount of influence that each term has on f (x).The func-
tion set F contains 6 unary functions and 5 binary functions.
All functions input and output are data matrices with the
same size as images in J . The subset of binary and unary
functions are:

F2ary = {+,−, | − |, ∗, /} (4)

F1ary =
{

A2,
√

A, log2, EQ,G(σ = 1), G(σ = 2)
}

(5)

Where EQ is the histogram equalization and G(σ = x) are
Gaussian filters with blur σ. The complete function set is:

F = F2ary ∪ F1ary (6)

Great care was taken to design an appropriate terminal set.
Thanks to previous understanding of the analytical proper-
ties of corner detectors described in [9, 8, 10], we conclude



Figure 1. Performance measures: left) repeatability rate plotted against image rotation for the Van
Gogh images; right)repeatability rate plotted against illumination change for the Graph images.

that an effective IP operator requires information pertain-
ing to the rate of change in image intensity values. Con-
sequently, the terminal set includes first and second order
image derivatives. However, we do not claim that this set
is necessary nor sufficient and further work will try to de-
termine an optimal set of useful information. Furthermore,
the terminal set is image dependent, such that each image
Ii ∈ J has a corresponding Ti defined by:

Ti = {Ii, Li,x, Li,x,x, Li,x,y, Li,y,y, Li,y, Ii,σ=1} (7)

Where Li,w = Ii ∗ Gw(σ = 1) are image derivatives com-
puted in the w direction with Gaussian kernel derivatives,
and Ii,σ=1 is the smoothed image.

5.1. Implementation Details

The algorithm was programmed using the Matlab tool-
box GPLAB 1. The image sequence used for training was
the Van Gogh set of a planar scene with rotation transforma-
tions. For testing, two image sequences were used: Monet
and Graph. The former is a sequence of a rotated planar
scene and the latter is an image under different illumination
conditions. All image sets were downloaded from the Vi-
sual Geometry Group website 2, along with Matlab source
code to compute the repeatability rate.

6. Experimental Results

We present two different interest point operators gener-
ated with our approach: IPGP1 and IPGP2 3. The first op-
erator IPGP1 has an extremely simple structure. The basic
approach of IPGP1 for interest point extraction is blurring

1http://gplab.sourceforge.net/index.html
2http://www.robots.ox.ac.uk/ vgg/research/
3IPGP stands for ”Interest Point detector with Genetic Programming”

IPGP1 G(σ = 2) ∗ [G(σ = 1) ∗ I − I]
IPGP2 G(σ = 1) ∗ [Lxx · Lyy] − G(σ = 1) ∗ [Lxy · Lyx]

Table 1. Mathematical expressions for IPGP1
and IPGP2.

the high frequencies of the image. IGP1 does not use im-
age derivatives to extract image regions with high signal
variations. It is basically a difference-of-Gaussian opera-
tor. A 95% repeatability rate was computed for IPGP1 on
the training image set. The second evolved detector IPGP2,
represents a modified version of the DET operator proposed
by Beaudet [1]. The DET operator is the determinant of the
Hessian Matrix around each point. In this instance the GP
evolutionary process was able to rediscover a previous man
made design. The repeatability rate for IPGP2 on the train-
ing set was 92%. Table 1 shows the mathematical expres-
sions for IPGP1 and IPGP2. Figure 1 shows two graphs
characterizing the performance of both evolved operators,
compared with the Harris detector. Finally, figure 2 shows
extracted interest points from samples taken from the three
image sequences.

7. Discussion and Conclusions

This paper presented a novel approach to low-level fea-
ture extraction. By posing interest point detection as an op-
timization problem, we have developed a learning method-
ology that allows a computer to automatically generate in-
terest point detectors. Learning was conducted with GP and
performance was optimized according to the repeatability
rate and global separability of extracted points. Experimen-
tal results showed that the proposed approach generates re-
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Figure 2. Sample images of extracted interest points. Columns correspond to Harris, IPGP1 and
IPGP2 from left to right. Rows correspond Van Gogh, Graph and Monet from top to bottom.

liable and compact operators. Furthermore, the experiments
conducted displays the abilities of GP to rediscovered a pre-
vious man made design, Beaudet’s DET operator. Never-
theless, the results presented in this paper, are not intended
as a claim that the evolved operators are superior to any
other, even if researchers could start to use those proposed
here. However, the results clearly demonstrate that learn-
ing techniques based on simulated evolution are capable of
producing competitive and useful feature extractors. How-
ever, much work must still be done in order to determine
appropriate optimization criteria if one wishes that effective
learning emerges. Moreover, it is our belief that using a
similar methodology it will be possible to design learning
algorithms that generate appropriate feature extractors for
different kinds of computer vision tasks.
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