
1

Introduction

1

The goal of getting computers to automatically solve problems is central to artificial
intelligence, machine learning, and the broad area encompassed by what Turing called
“machine intelligence” (Turing 1948, 1950).

Genetic programming is a systematic method for getting computers to automati-
cally solve a problem. Genetic programming starts from a high-level statement of
what needs to be done and automatically creates a computer program to solve the
problem.

The most important point of this book is: Genetic programming now routinely
delivers high-return human-competitive machine intelligence.

There are now 36 instances where genetic programming has produced a human-
competitive result. In section 1.1, we define “routine,” “high-return,” “human-com-
petitive,” and “machine intelligence” and outline the evidence supporting each
claimed human-competitive result.

The second of this book’s four main points is: Genetic programming is an auto-
mated invention machine.

There are now 23 instances where genetic programming has duplicated the func-
tionality of a previously patented invention, infringed a previously issued patent, or cre-
ated a patentable new invention. Specifically, there are 15 instances where genetic
programming has created an entity that either infringes or duplicates the functionality of

Table 1.1 Four main points of this book

Main point

1 ● Genetic programming now routinely delivers high-return human-competitive machine intelligence.
2 ● Genetic programming is an automated invention machine.
3 ● Genetic programming can automatically create a general solution to a problem in the form of

a parameterized topology.
4 ● Genetic programming has delivered a progression of qualitatively more substantial results in

synchrony with five approximately order-of-magnitude increases in the expenditure of computer time.



a previously patented 20th-century invention, six instances where genetic programming
has done the same with respect to an invention patented after January 1, 2000, and two
instances where genetic programming has created a patentable new invention. The two
new inventions are general-purpose controllers that outperform controllers employing
tuning rules that have been in widespread use in industry for most of the 20th century.

Novelty and creativity are prerequisites for patentability. A new idea that can be
logically deduced from facts that are known in a field, using transformations that are
known in a field, is not considered to be patentable by the Patent Office. A new idea
is patentable only if there is an “illogical step” (that is, a logically unjustified step) that
distinguishes the proposed invention from that which is readily deducible from what
is already known. As we discuss in section 1.2, genetic programming often unearths
novel solutions to problems because it does not travel along the well-trod paths of pre-
vious human thinking. The inventions generated by genetic programming exhibit the
kind of illogical discontinuity from previous human work that is required to obtain a
patent.

The third main point of this book is: Genetic programming can automatically cre-
ate a general solution to a problem in the form of a parameterized topology.

Eleven problems in this book demonstrate that genetic programming can auto-
matically create, in a single run, a general (parameterized) solution to a problem in the
form of a graphical structure whose nodes or edges represent components and where
the parameter values of the components are specified by mathematical expressions
containing free variables. Section 1.3 previews the automatic creation of such para-
meterized topologies.

This book’s fourth main point is: Genetic programming has delivered a progres-
sion of qualitatively more substantial results in synchrony with five approximately
order-of-magnitude increases in the expenditure of computer time.

Section 1.4 discusses the progression of results produced by genetic programming
over the 15-year period from 1987 to 2002, including

● solving toy problems,
● producing human-competitive results not involving previously patented inventions,
● duplicating 20th-century patented inventions,
● duplicating 21st-century patented inventions, and
● creating patentable new inventions.

Table 1.1 shows the four main points of this book.
In addition to solving numerous problems involving analog electrical circuits

(chapters 4, 5, 10, 11, 14, and 15) and controllers (chapters 3, 9, 12, and 13), the book
presents results involving the automatic synthesis of networks of chemical reactions
(chapter 8), antennas (chapter 6), and genetic networks (chapter 7).

Chapter 2 provides general background on genetic programming. Chapters 9, 10,
11, and 13 discuss parameterized topologies. Chapter 16 discusses the characteristics
that may make certain problems better suited for genetic algorithms or genetic pro-
gramming. Chapter 17 discusses issues of parallelization and computer time. Chapter
18 provides a historical perspective on computer speed and the succession of qualita-
tively more substantial results produced by genetic programming.

2 Genetic Programming IV



As far as we know, genetic programming is, at the present time, unique among
methods of artificial intelligence and machine learning in terms of its duplication of
numerous previously patented results, unique in its generation of patentable new
results, unique in the breadth and depth of problems solved, unique in its demon-
strated ability to produce parameterized topologies, and unique in its delivery of rou-
tine high-return, human-competitive machine intelligence.

1.1 Genetic Programming Now Routinely Delivers High-Return 
Human-Competitive Machine Intelligence

Focusing on this book’s first main point (i.e., that genetic programming now routinely
delivers high-return human-competitive machine intelligence), the next four sub-
sections explain what we mean by the terms

● human-competitive (section 1.1.1),
● high-return (section 1.1.2),
● routine (section 1.1.3), and
● machine intelligence (section 1.1.4).

Then, four additional sub-sections outline the evidence that supports the claim that
genetic programming now delivers results with these four characteristics.

1.1.1 What We Mean by “Human-Competitive”

In attempting to evaluate an automated problem-solving method, the question arises
as to whether there is any real substance to the demonstrative problems that are pub-
lished in connection with the method. Demonstrative problems in the fields of artifi-
cial intelligence and machine learning are often contrived toy problems that circulate
exclusively inside academic groups that study a particular methodology. These prob-
lems typically have little relevance to any issues pursued by any scientist or engineer
outside the fields of artificial intelligence and machine learning.

In his 1983 talk entitled “AI: Where It Has Been and Where It Is Going,” machine
learning pioneer Arthur Samuel said:

“[T]he aim [is]…to get machines to exhibit behavior, which if done by humans,
would be assumed to involve the use of intelligence.”

Samuel’s statement reflects the common goal articulated by the pioneers of the
1950s in the fields of artificial intelligence and machine learning. Indeed, getting
machines to produce human-like results is the reason for the existence of the fields of
artificial intelligence and machine learning.

To make this goal more concrete, we say that a result is “human-competitive” if it
satisfies one or more of the eight criteria in table 1.2.

The eight criteria in table 1.2 have the desirable attribute of being at arms-length
from the fields of artificial intelligence, machine learning, and genetic programming.
That is, a result cannot acquire the rating of “human-competitive” merely because it
is endorsed by researchers inside the specialized fields that are attempting to create

Introduction 3



machine intelligence. Instead, a result produced by an automated method must earn
the rating of “human-competitive” independent of the fact that it was generated by an
automated method.

These eight criteria are the same as those presented in Genetic Programming III:
Darwinian Invention and Problem Solving (Koza, Bennett, Andre, and Keane 1999a).

1.1.2 What We Mean by “High-Return”

What is delivered by the actual automated operation of an artificial method in com-
parison to the amount of knowledge, information, analysis, and intelligence that is
pre-supplied by the human employing the method?

We define the AI ratio (the “artificial-to-intelligence” ratio) of a problem-solving
method as the ratio of that which is delivered by the automated operation of the arti-
ficial method to the amount of intelligence that is supplied by the human applying the
method to a particular problem.

The AI ratio is especially pertinent to methods for getting computers to automati-
cally solve problems because it measures the value added by the artificial problem-
solving method. Manifestly, the aim of the fields of artificial intelligence and machine
learning is to generate human-competitive results with a high AI ratio.

Deep Blue: An Artificial Intelligence Milestone (Newborn 2002) describes the
1997 defeat of the human world chess champion Garry Kasparov by the Deep Blue
computer system. This outstanding example of machine intelligence is clearly a
human-competitive result (by virtue of satisfying criterion H of table 1.2). Feng-
Hsiung Hsu (the system architect and chip designer for the Deep Blue project)
recounts the intensive work on the Deep Blue project at IBM’s T. J. Watson Research
Center between 1989 and 1997 (Hsu 2002). The team of scientists and engineers 
spent years developing the software and the specialized computer chips to efficiently
evaluate large numbers of alternative moves as part of a massive parallel state-space
search. In short, the human developers invested an enormous amount of “I” in the

4 Genetic Programming IV

Table 1.2 Eight criteria for saying that an automatically created result is human-competitive

Criterion

A The result was patented as an invention in the past, is an improvement over a patented invention,
or would qualify today as a patentable new invention.

B The result is equal to or better than a result that was accepted as a new scientific result at the time
when it was published in a peer-reviewed scientific journal.

C The result is equal to or better than a result that was placed into a database or archive of results
maintained by an internationally recognized panel of scientific experts.

D The result is publishable in its own right as a new scientific result—independent of the fact that
the result was mechanically created.

E The result is equal to or better than the most recent human-created solution to a long-standing
problem for which there has been a succession of increasingly better human-created solutions.

F The result is equal to or better than a result that was considered an achievement in its field at the
time it was first discovered.

G The result solves a problem of indisputable difficulty in its field.

H The result holds its own or wins a regulated competition involving human contestants (in the form
of either live human players or human-written computer programs).



project. In spite of the fact that Deep Blue delivered a high (human-competitive)
amount of “A,” the project has a low return when measured in terms of the A-to-I ratio.
The builders of Deep Blue convincingly demonstrated the high level of intelligence of
the humans involved in the project, but very little in the way of machine intelligence.

The Chinook checker-playing computer program is another impressive human-
competitive result. Jonathan Schaeffer recounts the development of Chinook by his
eight-member team at the University of Alberta between 1989 and 1996 in his book One
Jump Ahead: Challenging Human Supremacy in Checkers (Schaeffer 1997). Schaeffer’s
team began with analysis. They recognized that the problem could be profitably decom-
posed into three distinct subproblems. First, an opening book controls the play at the
beginning of each game. Second, an evaluation function controls the play during the
middle of the game. Finally, when only a small number of pieces are left on the board,
an endgame database takes over and dictates the best line of play. Perfecting the open-
ing book entailed an iterative process of identifying “positions where Chinook had 
problems finding the right move” and looking for “the elusive cooks” (Schaeffer 1997,
page 237). By the time the project ended, the opening book had over 40,000 entries. In
a chapter entitled “A Wake-Up Call,” Schaeffer refers to the repeated difficulties sur-
rounding the evaluation function by saying “the thought of rewriting the evaluation 
routine…and tuning it seemed like my worst nightmare come true.” Meanwhile, the
endgame database was painstakingly extended from five, to six, to seven, and eventually
eight pieces using a variety of clever techniques. As Schaeffer (page 453) observes,

“The significant improvements to Chinook came from the knowledge added to the
program: endgame databases (computer generated), opening book (human gener-
ated but computer refined), and the evaluation function (human generated and
tuned). We, too, painfully suffered from the knowledge-acquisition bottleneck of
artificial intelligence. Regrettably, our project offered no new insights into this dif-
ficult problem, other than to reemphasize how serious a problem it really is.”

Chinook defeated world champion Marion Tinsley. However, because of the 
enormous amount of human “I” invested in the project, Chinook (like Deep Blue) has
a low return when measured in terms of the A-to-I ratio.

The aim of the fields of artificial intelligence and machine learning is to get 
computers to automatically generate human-competitive results with a high AI ratio—
not to have humans generate human-competitive results themselves.

1.1.3 What We Mean by “Routine”

Generality is a precondition to what we mean when we say that an automated 
problem-solving method is “routine.” Once the generality of a method is established,
“routineness” means that relatively little human effort is required to get the method 
to successfully handle new problems within a particular domain and to successfully
handle new problems from a different domain. The ease of making the transition to
new problems lies at the heart of what we mean by “routine.”

What fraction of Deep Blue’s and Chinook’s highly specialized software,
hardware, databases, and evaluation techniques can be brought to bear on different
games? For example, can Deep Blue’s massive parallel state-space search or
Chinook’s three-way decomposition be gainfully applied to a game, such as Go, with

Introduction 5



a significantly larger number of possible alternative moves at each point in the game?
What fraction of these systems can be applied to a game of incomplete information,
such as bridge? What more broadly applicable principles are embodied in these two
systems? For example, what fraction of these methodologies can be applied to the
problem of getting a robot to mop the floor of an obstacle-laden room? Correctly rec-
ognizing images or patterns? Devising an algorithm to solve a mathematical problem?
Automatically synthesizing a complex structure?

A problem-solving method cannot be considered routine if its executional steps
must be substantially augmented, deleted, rearranged, reworked, or customized by the
human user for each new problem.

1.1.4 What We Mean by “Machine Intelligence”

We use the term “machine intelligence” to refer to the broad vision articulated in Alan
Turing’s 1948 paper entitled “Intelligent Machinery” and his 1950 paper entitled
“Computing Machinery and Intelligence.”

In the 1950s, the terms “machine intelligence,” “artificial intelligence,” and
“machine learning” all referred to the goal of getting “machines to exhibit behavior,
which if done by humans, would be assumed to involve the use of intelligence” (to
again quote Arthur Samuel).

However, in the intervening five decades, the terms “artificial intelligence” and
“machine learning” progressively diverged from their original goal-oriented meaning.
These terms are now primarily associated with particular methodologies for attempting
to achieve the goal of getting computers to automatically solve problems. Thus, the
term “artificial intelligence” is today primarily associated with attempts to get com-
puters to solve problems using methods that rely on knowledge, logic, and various ana-
lytical and mathematical methods. The term “machine learning” is today primarily
associated with attempts to get computers to solve problems that use a particular small
and somewhat arbitrarily chosen set of methodologies (many of which are statistical in
nature). The narrowing of these terms is in marked contrast to the broad field envi-
sioned by Samuel at the time when he coined the term “machine learning” in the 1950s,
the charter of the original founders of the field of artificial intelligence, and the broad
vision encompassed by Turing’s term “machine intelligence.”

Of course, the shift in focus from broad goals to narrow methodologies is an all-
too-common sociological phenomenon in academic research.

Turing’s term “machine intelligence” did not undergo this arteriosclerosis
because, by accident of history, it was never appropriated or monopolized by any
group of academic researchers whose primary dedication is to a particular method-
ological approach. Thus, Turing’s term remains catholic today. We prefer to use
Turing’s term because it still communicates the broad goal of getting computers to
automatically solve problems in a human-like way.

In his 1948 paper, Turing identified three broad approaches by which human-
competitive machine intelligence might be achieved.

The first approach was a logic-driven search. Turing’s interest in this approach is
not surprising in light of Turing’s own pioneering work in the 1930s on the logical
foundations of computing.

6 Genetic Programming IV



The second approach for achieving machine intelligence was what he called a
“cultural search” in which previously acquired knowledge is accumulated, stored in
libraries, and brought to bear in solving a problem—the approach taken by modern
knowledge-based expert systems.

Turing’s first two approaches have been pursued over the past 50 years by the vast
majority of researchers using the methodologies that are today primarily associated
with the term “artificial intelligence.”

However, most pertinently for this book, Turing also identified a third approach to
machine intelligence in his 1948 paper entitled “Intelligent Machinery” (Turing 1948,
page 12; Ince 1992, page 127; Meltzer and Michie 1969, page 23), saying:

“There is the genetical or evolutionary search by which a combination of genes is
looked for, the criterion being the survival value.”

Turing did not specify in 1948 how to conduct the “genetical or evolutionary
search” for solutions to problems and, in particular, did not mention the concept of a
population or recombination. However, he did point out in his 1950 paper “Computing
Machinery and Intelligence” (Turing 1950, page 456; Ince 1992, page 156):

“We cannot expect to find a good child-machine at the first attempt. One must
experiment with teaching one such machine and see how well it learns. One can
then try another and see if it is better or worse. There is an obvious connection
between this process and evolution, by the identifications

“Structure of the child machine�Hereditary material
“Changes of the child machine�Mutations
“Natural selection�Judgment of the experimenter”

Thus, Turing correctly perceived in 1948 and 1950 that machine intelligence might
be achieved by an evolutionary process in which a description of a computer program
(the hereditary material) undergoes progressive modification (mutation) under the
guidance of natural selection (i.e., selective pressure in the form of what is now usually
called “fitness” by practitioners of genetic and evolutionary computation).

Of course, the measurement of fitness in modern genetic and evolutionary com-
putation is usually performed by automated means (as opposed to a human passing
judgment on each candidate individual, as suggested by Turing). In addition, modern
work generally employs a population (i.e., not just a point-to-point evolutionary pro-
gression) and sexual recombination—two key aspects of John Holland’s seminal work
on genetic algorithms, Adaptation in Natural and Artificial Systems (Holland 1975).

1.1.5 Human-Competitiveness of Results Produced by Genetic Programming

The previous four sub-sections defined the terms “human-competitive,” “high-return,”
“routine,” and “machine intelligence.” In this sub-section (and the next three sub-
sections), we evaluate the results produced by genetic programming in light of these
four definitions.

Starting with human-competitiveness, table 1.3 lists the 36 human-competitive
instances (of which we are aware) where genetic programming has produced 

Introduction 7



8 Genetic Programming IV

Table 1.3 Thirty-six human-competitive results produced by genetic programming

Basis for claim
of human-

Claimed instance competitiveness Reference

1 Creation of a better-than-classical quantum B, F Spector, Barnum, and Bernstein
algorithm for the Deutsch-Jozsa 1998
“early promise” problem

2 Creation of a better-than-classical quantum B, F Spector, Barnum, and Bernstein
algorithm for Grover’s database search problem 1999

3 Creation of a quantum algorithm for the depth- D Spector, Barnum, Bernstein, and
two AND/OR query problem that is better than Swamy 1999; Barnum,
any previously published result Bernstein, and Spector 2000

4 Creation of a quantum algorithm for the D Barnum, Bernstein, and Spector
depth-one OR query problem that is better 2000
than any previously published result

5 Creation of a protocol for communicating D Spector and Bernstein 2003
information through a quantum gate that was
previously thought not to permit such
communication

6 Creation of a novel variant of quantum dense D Spector and Bernstein 2003
coding

7 Creation of a soccer-playing program that won H Luke 1998
its first two games in the Robo Cup 1997 
competition

8 Creation of a soccer-playing program that ranked H Andre and Teller 1999
in the middle of the field of 34 human-written
programs in the Robo Cup 1998 competition

9 Creation of four different algorithms for the B, E Sections 18.8 and 18.10 of
transmembrane segment identification problem Genetic Programming II and
for proteins sections 16.5 and 17.2 of

Genetic Programming III

10 Creation of a sorting network for seven items A, D Sections 21.4.4, 23.6, and 57.8.1
using only 16 steps of Genetic Programming III

11 Rediscovery of the Campbell ladder topology for A, F Section 25.15.1 of Genetic
lowpass and highpass filters Programming III and

section 5.2 of this book

12 Rediscovery of the Zobel “M-derived half section” A, F Section 25.15.2 of Genetic
and “constant K” filter sections Programming III

13 Rediscovery of the Cauer (elliptic) topology for A, F Section 27.3.7 of Genetic
filters Programming III

14 Automatic decomposition of the problem of A, F Section 32.3 of Genetic
synthesizing a crossover filter Programming III

15 Rediscovery of a recognizable voltage gain stage A, F Section 42.3 of Genetic
and a Darlington emitter-follower section of an Programming III
amplifier and other circuits

16 Synthesis of 60 and 96 decibel amplifiers A, F Section 45.3 of Genetic
Programming III

(Continued)



Introduction 9

Table 1.3 (Continued)

Basis for claim
of human-

Claimed instance competitiveness Reference

17 Synthesis of analog computational circuits A, D, G Section 47.5.3 of Genetic
for squaring, cubing, square root, cube root, Programming III
logarithm, and Gaussian functions

18 Synthesis of a real-time analog circuit for G Section 48.3 of Genetic
time-optimal control of a robot Programming III

19 Synthesis of an electronic thermometer A, G Section 49.3 of Genetic
Programming III

20 Synthesis of a voltage reference circuit A, G Section 50.3 of Genetic
Programming III

21 Creation of a cellular automata rule for the D, E Andre, Bennett, and Koza 1996
majority classification problem that is better and section 58.4 of Genetic
than the Gacs-Kurdyumov-Levin (GKL) rule Programming III
and all other known rules written by humans

22 Creation of motifs that detect the D–E–A–D box C Section 59.8 of Genetic
family of proteins and the manganese superoxide Programming III
dismutase family

23 Synthesis of topology for a PID-D2 A, F Section 3.7 of this book
(proportional, integrative, derivative, and
second derivative) controller

24 Synthesis of an analog circuit equivalent A, F Section 4.3 of this book
to Philbrick circuit

25 Synthesis of a NAND circuit A, F Section 4.4 of this book

26 Simultaneous synthesis of topology, sizing, A, F, G Chapter 5 of this book
placement, and routing of analog electrical 
circuits

27 Synthesis of topology for a PID (proportional, A, F Section 9.2 of this book
integrative, and derivative) controller

28 Rediscovery of negative feedback A, E, F, G Chapter 14 of this book

29 Synthesis of a low-voltage balun circuit A Section 15.4.1 of this book

30 Synthesis of a mixed analog-digital variable A Section 15.4.2 of this book
capacitor circuit

31 Synthesis of a high-current load circuit A Section 15.4.3 of this book

32 Synthesis of a voltage-current conversion circuit A Section 15.4.4 of this book

33 Synthesis of a Cubic function generator A Section 15.4.5 of this book

34 Synthesis of a tunable integrated active filter A Section 15.4.6 of this book

35 Creation of PID tuning rules that outperform A, B, D, Chapter 12 of this book
the Ziegler-Nichols and Åström-Hägglund E, F, G
tuning rules

36 Creation of three non-PID controllers that A, B, D, Chapter 13 of this book
outperform a PID controller that uses the E, F, G
Ziegler-Nichols or Åström-Hägglund tuning 
rules



10 Genetic Programming IV

human-competitive results. Each entry in the table is accompanied by the criteria
(from table 1.2) that establish the basis for the claim of human-competitiveness.

This book reports in detail on the last 14 of the human-competitive results in table
1.3. The rating of “human-competitive” is justified for each such result (sections 3.7.3,
4.3.3, 4.4.3, 5.2.3, 9.2.3, 12.4, 13.3, 14.3, and 15.6).

Twenty-three of the instances in table 1.3 involve patents (as indicated by an “A”
in column 3). Eleven of the automatically created results infringe previously issued
patents and 10 duplicate the functionality of previously patented inventions in a non-
infringing way. The 29th through 34th entries in table 1.3 relate to patents for analog
circuits that were issued after January 1, 2000. The last two entries are patentable new
inventions. Tables C.1 and C.2 in appendix C provides additional details on the 23
patent-related results produced by genetic programming.

1.1.6 High-Return of the Results Produced by Genetic Programming

Ascertaining the return of a problem-solving method requires measuring the amount
of “A” that is delivered by the method in relation to the amount of “I” that is supplied
by the human user.

Because each of the 36 results in table 1.3 is a human-competitive result, it is 
reasonable to say that genetic programming delivered a high amount of “A” for each
of them.

The question thus arises as to how much “I” was supplied by the human user in order
to produce these 36 results. Answering this question requires the discipline of carefully
identifying the amount of analysis, intelligence, information, and knowledge that was
supplied by the intelligent human user prior to launching a run of genetic programming.

In this book (and our previous books and papers on genetic programming), we
make a clear distinction between the problem-specific preparatory steps and the prob-
lem-independent executional steps of a run of genetic programming.

The preparatory steps are the problem-specific and domain-specific steps that are
performed by the human user prior to launching a run of the problem-solving method.
The preparatory steps establish the “I” component of the AI ratio (i.e., the denominator).

The executional steps are the problem-independent and domain-independent steps
that are automatically executed during a run of the problem-solving method. The 
executional steps of genetic programming are defined by the flowchart in figure 2.1 of
this book. The results produced by the executional steps provide the “A” component
of the AI ratio (i.e., the numerator).

The five major preparatory steps for the basic version of genetic programming
require the human user to specify

(1) the set of terminals (e.g., the independent variables of the problem, zero-argument
functions, and random constants) for each branch of the to-be-evolved computer
program,

(2) the set of primitive functions for each branch of the to-be-evolved computer program,
(3) the fitness measure (for explicitly or implicitly measuring the fitness of candidate

individuals in the population),
(4) certain parameters for controlling the run, and
(5) a termination criterion and method for designating the result of the run.



Figure 1.1 shows the five major preparatory steps for the basic version of genetic
programming. The preparatory steps (shown at the top of the figure) are the input to
the genetic programming system. A computer program (shown at the bottom) is the
output of the genetic programming system. The program that is automatically created
by genetic programming may solve, or approximately solve, the user’s problem.

Genetic programming requires a set of primitive ingredients to get started. 
The first two preparatory steps specify the primitive ingredients that are to be used to
create the to-be-evolved programs. The universe of allowable compositions of these
ingredients defines the search space for a run of genetic programming.

The identification of the function set and terminal set for a particular problem 
(or category of problems) is often a mundane and straightforward process that requires
only de minimus knowledge and platitudinous information about the problem domain.

For example, if the goal is to get genetic programming to automatically program
a robot to mop the entire floor of an obstacle-laden room, the human user must tell
genetic programming that the robot is capable of executing functions such as moving,
turning, and swishing the mop. The human user must supply this information prior to
a run because the genetic programming system does not have any built-in knowledge
telling it that the robot can perform these particular functions. Of course, the neces-
sity of specifying a problem’s primitive ingredients is not a unique requirement of
genetic programming. It would be necessary to impart this same basic information to
a neural network learning algorithm, a reinforcement learning algorithm, a decision
tree, a classifier system, an automated logic algorithm, or virtually any other auto-
mated technique that is likely to be used to solve this problem.

Similarly, if genetic programming is to automatically synthesize an analog 
electrical circuit, the human user must supply basic information about the ingredients
that are appropriate for solving a problem in the domain of analog circuit synthesis. 
In particular, the human user must inform genetic programming that the components of
the to-be-created circuit may include transistors, capacitors, and resistors (as opposed
to, say, neon bulbs, relays, and doorbells). Although this information may be second
nature to anyone working with electrical circuits, genetic programming does not have
any built-in knowledge concerning the fact that transistors, capacitors, and resistors 
are the workhorse components for nearly all present-day electrical circuits. Once the
human user has identified the primitive ingredients, the same function set can be used
to automatically synthesize amplifiers, computational circuits, active filters, voltage
reference circuits, and any other circuit composed of these basic ingredients.

Introduction 11

GP

Terminal set Function set
Fitness

measure

A computer program

Parameters
Termination criterion
and result designation

Figure 1.1 Five major preparatory steps for the basic version of genetic programming.



Likewise, genetic programming does not know that the inputs to a controller
include the reference signal and plant output and that controllers are composed of inte-
grators, differentiators, leads, lags, gains, adders, subtractors, and the like. Thus, if
genetic programming is to automatically synthesize a controller, the human user must
give genetic programming this basic information about the field of control.

The third preparatory step concerns the fitness measure for the problem. The fit-
ness measure specifies what needs to be done. The result that is produced by genetic
programming specifies “how to do it.” The fitness measure is the primary mechanism
for communicating the high-level statement of the problem’s requirements to the
genetic programming system. If one views the first two preparatory steps as defining
the search space for the problem, one can then view the third preparatory step (the fit-
ness measure) as specifying the search’s desired direction.

The fitness measure is the means of ascertaining that one candidate individual is
better than another. That is, the fitness measure is used to establish a partial order
among candidate individuals. The partial order is used during the executional steps of
genetic programming to select individuals to participate in the various genetic opera-
tions (i.e., crossover, reproduction, mutation, and the architecture-altering operations).

The fitness measure is derived from the high-level statement of the problem.
Indeed, for many problems, the fitness measure may be almost identical to the high-
level statement of the problem. The fitness measure typically assigns a single numeric
value reflecting the extent to which a candidate individual satisfies the problem’s
high-level requirements. For example:

● If an electrical engineer needs a circuit that amplifies an incoming signal by a fac-
tor of 1,000, the fitness measure might assign fitness to a candidate circuit based on
how closely the circuit’s output comes to a target signal whose amplitude is 1,000
times that of the incoming signal. In comparing two candidate circuits, amplifica-
tion of 990-to-1 would be considered better than 980-to-1.

● If a control engineer wants to design a controller for the cruise control device in a
car, the fitness measure might be based on the time required to bring the car’s speed
up from 55 to 65 miles per hour. When candidate controllers are compared, a rise
time of 10.1 seconds would be considered better than 10.2 seconds.

● If a robot is expected to mop a room, the fitness measure might be based on the per-
centage of the area of the floor that is cleaned within a reasonable amount of time.

● If a classifier is needed for protein sequences (or any other objects), the fitness
measure might be based on the correlation between the category to which the clas-
sifier assigns each protein sequence and the correct category.

● If a biochemist wants to find a network of chemical reactions or a metabolic path-
way that matches observed data, the fitness measure might assign fitness to a can-
didate network based on how closely the network’s output matches the data.

The fitness measure for a real-world problem is typically multiobjective. That is,
there may be more than one element that is considered in ascertaining fitness. 
For example, the engineer may want an amplifier with 1,000-to-1 gain, but may also
want low distortion, low bias, and a low parts count. In practice, the elements of a mul-
tiobjective fitness measure usually conflict with one another. Thus, a multiobjective

12 Genetic Programming IV



fitness measure must prioritize the different elements so as to reflect the tradeoffs that
the engineer is willing to accept. For example, the engineer may be willing to tolerate
an additional 1% of distortion in exchange for the elimination of one part from the 
circuit. One approach is to blend the distinct elements of a fitness measure into a 
single numerical value (often merely by weighting them and adding them together).

The fourth and fifth preparatory steps are administrative.
The fourth preparatory step entails specifying the control parameters for the run.

The major control parameters are the population size and the number of generations
to be run. Some analytic methods are available for suggesting optimal population sizes
for runs of the genetic algorithm on particular problems. However, the practical real-
ity is that we generally do not use any such analytic method to choose the population
size. Instead, we determine the population size such that genetic programming can
execute a reasonably large number of generations within the amount of computer time
we are willing to devote to the problem. As for other control parameters, we have,
broadly speaking, used the same (undoubtedly non-optimal) set of minor control
parameters from problem to problem over a period of years. Although particular prob-
lems in this book could possibly be solved more efficiently by means of a different
choice of control parameters, we believe that our policy of substantial consistency in
the choice of control parameters helps the reader eliminate superficial concerns that
the demonstrated success of genetic programming depends on shrewd or fortuitous
choices of the control parameters. As can be seen in this book (and our previous
books), we frequently make only one run (or, at most, only a few runs) of each major
new problem.

The fifth preparatory step consists of specifying the termination criterion and the
method of designating the result of the run.

We have now identified that which is supplied by the human user of genetic pro-
gramming. For the problems in this book, we believe that it is generally fair to say that
only a de minimus amount of “I” is contained in the problem’s primitive ingredients
(the first and second preparatory steps), the problem’s fitness measure (the third
preparatory step containing the high-level statement of what needs to be done), and
the run’s control parameters and termination procedures (the administrative fourth and
fifth preparatory steps).

In any event, the amount of “I” required by genetic programming is certainly not
greater than that required by any other method of artificial intelligence and machine
learning of which we are aware. Indeed, we know of no other problem-solving method
(automated or human) that does not start with primitive elements of some kind, does
not incorporate some method for specifying what needs to be done to guide the
method’s operation, does not employ administrative parameters of some kind, and
does not contain a termination criterion of some kind.

In view of the numerous human-competitive results produced by genetic 
programming (table 1.3), it can be seen that genetic programming is capable of 
delivering a large amount of “A.” That is, its AI ratio is high.

Throughout this book, there are numerous sections where the AI ratio is qualita-
tively evaluated for particular problems (sections 3.7.4, 3.8.4, 3.9.4, 3.10.4, 4.2.4,
4.3.5, 4.4.5, 4.5.4, 4.6.4, 4.7.4, 5.2.5, 5.3.4, 6.7, 7.4.2, 8.6.2, 8.7.2, 9.1.4, 9.2.5, 10.2.4,
10.3.4, 10.4.4, 10.5.4, 11.1.4, 11.2.4, 12.6, 13.5, 14.5, and 15.8).

Introduction 13



1.1.7 Routineness of the Results Produced by Genetic Programming

This book demonstrates the generality of genetic programming by solving illustrative
problems from several fields, including problems involving

● control,
● analog electrical circuits (including six post-2000 patented circuits),
● placement and routing of circuits,
● antennas,
● genetic networks, and
● metabolic pathways.

Our previous publications (and previous publications by others) additionally
demonstrate that genetic programming is capable of solving problems in numerous
other areas.

The bright line distinction between that which is delivered by genetic program-
ming and that which is supplied by the intelligent human user (in section 1.1.6) addi-
tionally helps make it clear that genetic programming is a systematic general
problem-solving method.

As will be seen in this book, relatively little effort is required to make the transi-
tion to new problems within a particular domain or to new problems from an entirely
different domain.

For example, after discussing the first problem of automatically synthesizing both
the topology and tuning of a controller in chapter 3, the transition to each subsequent
problem of controller synthesis in that chapter mainly involves providing genetic pro-
gramming with a different specification of what needs to be done—that is, a different
fitness measure. Because virtually all controllers are built from the same primitive
ingredients (e.g., integrators, differentiators, gains, adders, subtractors, and signals
representing the plant output and the reference signal), additional problems of con-
troller synthesis can be handled merely by changing the statement of what needs to be
done.

Similarly, after discussing the first problem of automatically synthesizing both the
topology and sizing of an analog electrical circuit in chapter 4, the transition to each
subsequent problem of circuit design in that chapter mainly involves providing genetic
programming with a different specification of what needs to be done.

The routineness of the transition from problem to problem is especially clear in
chapter 15 involving six circuits that were patented after January 1, 2000. All six prob-
lems were run consecutively over a period of about two months intentionally using the
very same computer, the very same software, and the very same settings of the minor
control parameters. All six circuits were composed of the workhorse ingredients of
present-day electronics (i.e., resistors, capacitors, and transistors). As we move from
one problem to the next in chapter 15, the only substantial change is the specification
of what needs to be done. This specification is based on each inventor’s statement of
performance of each patented circuit. As stated in Genetic Programming: On the
Programming of Computers by Means of Natural Selection (Koza 1992a), “Structure
arises from fitness.”

14 Genetic Programming IV



The transition from one problem domain to another becomes especially clear by
comparing the work concerning the automatic synthesis of controllers, analog electrical
circuits, antennas, genetic networks, and networks of chemical reactions.

In making the transition from problems of automatic synthesis of controllers to
problems of automatic synthesis of circuits, the primitive ingredients change from
integrators, differentiators, gains, adders, subtractors, and the like to transistors, resis-
tors, capacitors, and the like. The fitness measure changes from one that minimizes a
controller’s integral of time-weighted absolute error, minimizes overshoot, and 
maximizes disturbance rejection to one that is based on the circuit’s amplification,
suppression or passage of a signal, elimination of distortion, and the like.

In making the transition from problems of automatic synthesis of circuits to problems
of automatic synthesis of networks of chemical reactions (metabolic pathways), the
primitive ingredients change to functions that represent chemical reactions that 
consume chemical substrates (inputs to chemical reactions) and produce reaction
products (outputs), at certain rates, in the presence of certain catalysts (enzymes). 
The fitness measure compares the quantity of product that is produced by a candidate
network to the observed data.

Of course, although the preparatory steps change from one problem to another and
from one domain to another, the main executional steps (i.e., the flowchart) of genetic
programming remain unchanged.

In numerous places throughout this book, we demonstrate

● the routineness of the transition from one problem to another problem in the same
domain (sections 3.8.3, 3.9.3, 3.10.3, 4.3.4. 4.4.4, 4.5.3, 4.6.3, 4.7.3, 5.3.3, 8.7.1,
9.2.4, 10.3.3. 10.4.3. 10.5.3, 11.2.3, 13.4. 14.4. and 15.7),

● the routineness of the transition from one domain to the next (sections 4.2.3, 5.2.4,
6.6, 7.4.1, 8.6.1, and 12.5),

● the routineness of the transition from a non-parameterized version of a problem to
a parameterized version (sections 9.1.3 and 10.2.3), and

● the routineness of the transition from a problem involving parameterized topologies
without conditional developmental operators to a problem involving parameterized
topologies with them (section 11.1.3).

1.1.8 Machine Intelligence

As will be seen throughout this book, genetic programming does indeed succeed in
getting computers to automatically solve problems from a high-level statement of
what needs to be done.

1.2 Genetic Programming Is an Automated Invention Machine

In a commencement address at Worcester Polytechnic Institute in 2000, C. Michael
Armstrong, CEO of American Telephone & Telegraph, recounted:

“On a sweltering summer morning in August 1927, a young man was seated on 
a passenger ferry as it churned across Upper New York Bay toward Manhattan. 

Introduction 15



16 Genetic Programming IV

He was gazing idly at the Statue of Liberty when suddenly he jumped from his seat
and began frantically searching his pockets for a scrap of paper.

“Coming up empty, he raced to the newsboy on deck and bought a copy of The
New York Times. The man tore through the pages until he found one that was nearly
free of type. He uncapped his fountain pen, sketched a couple of crude diagrams,
and surrounded them with mathematical equations.”

Holding up the now-famous page from The New York Times (figure 1.2),
C. Michael Armstrong continued:

“When the ferryboat docked at Manhattan, he raced to his office at Bell
Laboratories. He showed his diagrams and equations to one of his coworkers who

Figure 1.2 Notes written by Harold S. Black on a page of The New York Times while
commuting on the Lackawanna Ferry. Reproduced here by kind permission of Lucent
Technologies.



read them carefully. Then his friend let out a big whoop and they both scrawled
their initials on the newspaper page.

“The young man on the ferryboat was Harold Black, Worcester Polytechnic
Institute Class of 1921. And the scribblings on his newspaper were the blueprint for
the negative-feedback amplifier, a device that played a vital role in 20th century
electronics.”

Referring to the scribblings on this newspaper page, Mervin Kelly, then president
of Bell Labs, said in 1957 (Black 1977):

“Although many of Harold’s inventions have made great impact, that of the nega-
tive feedback amplifier is indeed the most outstanding. It easily ranks coordinate
with De Forest’s invention of the audion as one of the two inventions of broadest
scope and significance in electronics and communications of the past 50 years…It
is no exaggeration to say that without Black’s invention, the present long-distance
telephone and television networks which cover our entire country and the
transoceanic telephone cables would not exist. The application of Black’s principle
of negative feedback has not been limited to telecommunications.…[T]he entire
explosive extension of the area of control, both electrical and mechanical, grew out
of an understanding of the feedback principle.”

Lee (1998) recounts the history that predated Black’s 1927 invention of negative
feedback. Earlier work on feedback included rocket pioneer Robert Goddard’s 1915
patent for a vacuum tube oscillator using positive feedback (Goddard 1915) and
Edwin Howard Armstrong’s 1914 patent on amplifiers again using positive feedback
(Armstrong 1914). As Lee observes,

“[P]rogress in electronics in those early years was largely made possible by
Armstrong’s regenerative [positive feedback] amplifier, since there was no other
economical way to obtain large amounts of gain from the primitive (and expensive)
vacuum tubes of the day.”…

“Armstrong was able to get gain from a single stage that others could obtain only
by cascading several. This achievement allowed the construction of relatively 
inexpensive, high-gain receivers and therefore also enabled dramatic reductions in
transmitter power because of the enhanced sensitivity provided by this increased
gain. In short order, the positive feedback (regenerative) amplifier became a nearly
universal idiom, and Westinghouse (to whom Armstrong had assigned patent
rights) kept its legal staff quite busy trying to make sure that only licensees were
using this revolutionary technology.” (Emphasis added.)

However, Westinghouse’s “nearly universal idiom” did not solve a major problem
facing American Telephone & Telegraph at the time, namely distortion in amplifiers.
As Lee (1998, page 387) further points out:

“Although Armstrong’s regenerative amplifier pretty much solved the problem of
obtaining large amounts of gain from vacuum tube amplifiers, a different problem

Introduction 17



preoccupied the telephone industry. In trying to extend communications distances,
amplifiers were needed to compensate for transmission-line attenuation. Using
amplifiers available in those early days, distances of a few hundred miles were rou-
tinely achievable and, with great care, perhaps 1,000–2,000 miles was possible, but
the quality was poor. After a tremendous amount of work, a crude transcontinental
telephone service was inaugurated in 1915, with a 68-year-old Alexander Graham
Bell making the first call to his former assistant, Thomas Watson, but this feat was
more of a stunt than a practical achievement.

“The problem wasn’t one of insufficient amplification; it was trivial to make the
signal at the end of the line quite loud. Rather the problem was distortion. Each
amplifier contributed some small (say, 1%) distortion. Cascading a hundred of these
things guaranteed that what came out didn’t very much resemble what went in.

“The main ‘solution’ at the time was to (try to) guarantee ‘small signal’ opera-
tion of the amplifiers. That is, by restricting the dynamic range of the signals to a
tiny fraction of the amplifier’s overall capability, more linear operation could be
achieved. Unfortunately, this strategy is quite inefficient since it requires the con-
struction of, say, 100-W amplifiers to process milliwatt signals. Because of the
arbitrary distance between a signal source and an amplifier (or possibly between
amplifiers), though, it was difficult to guarantee that the input signals were always
sufficiently small to satisfy linearity.”

Such was the state of affairs when Harold S. Black started working in 1921 at
AT&T on the problem of reducing amplifier distortion. After considerable work,
Black reached the conclusion in 1923 (Black 1977):

“There was just no way to meet our ambitious goal.”

As Black recounts:

“This might have been the end of it, except that, on March 16, 1923, I was fortu-
nate enough to attend a lecture by the famous scientist and engineer, Charles
Proteus Steinmetz.”…

“I no longer remember the subject, but I do remember the clarity and logic of his
presentation.”…

“I was so impressed by how Steinmetz got down to the fundamentals that when I
returned home at 2 A.M., I restated my own problems as follows: Remove all distor-
tion products from the amplifier output. In doing this, I was accepting an imperfect
amplifier and regarding its output as composed of what was wanted plus what was
not wanted. I considered what was not wanted to be distortion (regardless of whether
it was due to nonlinearity, variation in the tube gain, or whatever), and I asked myself
how to isolate and then eliminate this distortion. I immediately observed that by
reducing the output to the same amplitude as the input, and subtracting one from the
other, only the distortion would remain. This distortion could then be amplified in a
separate amplifier and used to cancel out the distortion in the original amplifier.…

“The next day, March 17, I sketched two such embodiments and thereby
invented the feed-forward amplifier.…

“Later that day, I set up each embodiment in the laboratory. Both worked as
expected.”

18 Genetic Programming IV



Black applied for a patent on his 1923 invention of the feed-forward amplifier and
the patent was issued in 1928 (Black 1928). Unfortunately, his 1923 invention did not
turn out to be practical. As Black (1977) laments,

“[T]he invention required precise balances and subtractions that were hard to
achieve and maintain with the amplifiers available at that time.…

“Over the next four years, I struggled with the problem of turning my intention
into an amplifier that was practical.…

“[F]or my purpose the gain had to be absolutely perfect.”
“For example, every hour on the hour—24 hours a day—somebody had to adjust

the filament current to its correct value.…
“In addition, every six hours it became necessary to adjust the B battery voltage,

because the amplifier gain would get out of hand.
“There were other complications too, but these were enough!”

The bottom line concerning the feed-forward amplifier that Black invented in
1923 was:

“Nothing came of my efforts, however, because every circuit I devised turned out
to be far too complex to be practical.”

In spite of this false start, Black continued to work on the problem.

After working on the problem for a total of six years:

“Then came the morning of Tuesday, August 2, 1927, when the concept of the neg-
ative feedback amplifier came to me in a flash while I was crossing the Hudson
River on the Lackawanna Ferry, on my way to work. For more than 50 years, I have
pondered how and why the idea came, and I can’t say any more today than I could
that morning. All I know is that after several years of hard work on the problem, I
suddenly realized that if I fed the amplifier output back to the input, in reverse
phase, and kept the device from oscillating (singing, as we called it then), I would
have exactly what I wanted: a means of canceling out the distortion of the output.
I opened my morning newspaper and on a page of The New York Times I sketched
a simple canonical diagram of a negative feedback amplifier plus the equations for
the amplification with feedback. I signed the sketch, and 20 minutes later, when 
I reached the laboratory at 463 West Street, it was witnessed, understood, and
signed by the late Earl C. Blessing.”

Numerous other inventors have reported similar singular moments when their 
previous thinking about a vexatious problem crystallized into an invention.

1.2.1 The Illogical Nature of Invention and Evolution

Most computer scientists unquestioningly assume that any effective problem-solving
process must be logically sound and deterministic.

The consequence of this unproven assumption is that virtually all conventional
approaches to artificial intelligence and machine learning possess these characteris-
tics. Yet the reality is that logic does not govern two of the most important processes

Introduction 19



for solving complex problems—namely the invention process (performed by creative
humans) and the evolutionary process (occurring in nature).

Moreover, neither the invention process nor the evolutionary process is deterministic.
A new idea that can be logically deduced from facts that are known in a field,

using transformations that are known in a field, is not considered to be inventive by
the Patent Office. A new idea is patentable only if there is what the courts have called
an “illogical step” (i.e., a logically unjustified step). The required illogic distinguishes
the proposed invention from that which is readily deducible from what is already
known. The required illogical step is also sometimes referred to as a “flash of genius.”
In other words, logical thinking is not the key ingredient for one of the most signifi-
cant human problem-solving activities, namely the invention process. Interestingly,
everyday usage parallels the law concerning the point that a lack of logic is a precon-
dition for inventiveness: People who mechanically apply existing facts in well-known
ways are summarily dismissed as being uncreative.

Of course, when we say that the invention process is inherently illogical, we do
not mean that logical thinking is not helpful to inventors or that inventors are oblivi-
ous to logic. Logical thinking often plays the important role of setting the stage for an
invention. “[S]everal years of hard work on the problem” brought Black’s thinking
into the proximity of a solution (Black 1977). Then, at the critical moment, Black
made the illogical leap during his now-famous ferryboat ride. Although logical think-
ing may play a role in invention and creativity, at the end of the day, the critical 
element is a logical discontinuity from established ideas.

The design of complex entities by the evolutionary process in nature is another
important type of problem-solving that is not governed by logic. In nature, solutions
to design problems are discovered by means of evolution and natural selection. 
The evolutionary process is probabilistic, rather than deterministic. Moreover, it is
certainly not guided by mathematical logic. Indeed, one of the most important 
characteristics of the evolutionary process is that it intentionally creates and actively
maintains inconsistent and contradictory alternatives. Logically sound systems do not
do that. The active maintenance of inconsistent and contradictory alternatives (called
genetic diversity) is a precondition for the success of the evolutionary process.

1.2.2 Overcoming Established Beliefs

As previously mentioned, Edwin Howard Armstrong’s approach to amplification
using positive feedback was “a nearly universal idiom” during the early part of the 
20th century.

In spite of the elegance and manifest effectiveness of negative feedback,
Armstrong’s approach was so entrenched in the thinking of electrical engineers that
there was widespread resistance to Black’s concept of negative feedback for many
years after its invention. As Black (1977) recalls:

“Although the invention had been submitted to the U.S. Patent Office on August 8,
1928, more than nine years would elapse before the patent was issued on December
21, 1937.…One reason for the delay was that the concept was so contrary to
established beliefs.” (Emphasis added.)

20 Genetic Programming IV



The British Patent Office was even more resistant. As Black (1977) recounted:

“…our patent application was treated in the same manner as one for a perpetual
motion machine.”

The British Patent Office continued to maintain that negative feedback would not
work in spite of the fact that AT&T had “70 amplifiers working successfully in the
telephone building at Morristown” for a number of years.

We believe that one reason why it took an inordinate amount of time for negative
feedback to gain acceptance was that human thinking often becomes channeled along
the well-traveled paths of “established beliefs.”

One of the virtues of genetic programming is that it is not aware, much less 
concerned, about whether a solution is “contrary to established beliefs.” Genetic
programming approaches a problem in an open-ended way that is not encumbered by
previous human thinking. For this reason, genetic programming often unearths solu-
tions that might have never occurred to human scientists and engineers who are
steeped in the thinking of the day.

In the section entitled “Genetic Programming Takes a Ride on the Lackawanna
Ferry” (section 14.1), genetic programming is used to reinvent negative feedback. 
As will be seen, if one begins with a high-level statement of the problem that Black
was trying to solve, Black’s solution flows almost effortlessly from a run of genetic
programming. It does so because Black’s solution is a correct solution to the problem
and, as they say, necessity is the mother of invention.

For the 20 other instances in table 1.3 where genetic programming created an
entity that infringes a previously issued patent or duplicates the functionality of a 
previously patented invention in a non-infringing or novel way, the solution similarly
flowed directly from a high-level statement of the problem.

The 23 instances where genetic programming has duplicated the functionality of
a previously patented invention, infringed a previously issued patent, or created a
patentable new invention are shown in tables C.1 and C.2 in appendix C.

1.2.3 Automating the Invention Process

For over 200 years, the U.S. Patent Office has been in the business of receiving 
written descriptions of human-designed inventions and judging whether the purported
inventions are

● “new,”
● “improved,”
● “useful,” and
● “[un]obvious…to a person having ordinary skill in the art to which said subject

matter pertains.” (35 United States Code 103a)

When the Patent Office passes judgment on a patent application, it generally
works from written documents and operates at arms length from the inventor. When
an automated method duplicates the detailed structure of a previously patented
human-created invention, the fact that the human-designed version originally satisfied

Introduction 21



the Patent Office’s criteria for patent-worthiness means that an automatically created
duplicate would also have satisfied the Patent Office’s criteria for patent-worthiness
had it arrived at the Patent Office prior to the human inventor’s submission.

When genetic programming is applied to a problem whose solution is a previously
patented invention, there are three possible outcomes:

● failure of the run to solve the problem,
● creation of a solution that infringes a previously issued patent, or
● creation of a non-infringing solution that duplicates the functionality of a previously

patented invention.

There are two sub-cases associated with the third case.
First, a non-infringing solution may be a previously known solution (i.e., prior art).

The previously known solution may or may not have been patented in the past.
Second, a non-infringing solution may be a new solution to the problem.
In this second sub-case, a new, genetically evolved, non-infringing solution may

be patentable if it satisfies the additional requirements of being “useful,” “improved,”
and “unobvious.”

A genetically evolved solution would generally be deemed to be “useful” for the
same reasons that the originally patented invention was deemed to be “useful.”

Almost every alternative solution to a particular problem usually has some attribute
that can be reasonably viewed (from some standpoint) as being “improved” in some
respect or to some degree.

Because genetically evolved solutions often contain features that would never
occur to human scientists or engineers, a genetically evolved alternative solution will
often be “unobvious” to someone “having ordinary skill in the art.”

U.S. law suggests that inventions created by automated means are patentable by
saying:

“Patentability shall not be negatived by the manner in which the invention was
made.” (35 United States Code 103a)

1.2.4 Patentable New Inventions Produced by Genetic Programming

Given that genetic programming has solved problems whose solutions were previ-
ously patented, it is a natural extension to try to use genetic programming to generate
patentable new inventions.

Chapters 12 and 13 of this book describe a patent application filed on July 12,
2002, for improved PID (proportional, integrative, and derivative) tuning rules and
non-PID controllers that were automatically created by means of genetic program-
ming (Keane, Koza, and Streeter 2002a). The genetically evolved tuning rules and
controllers outperform controllers tuned using the widely used Ziegler-Nichols tuning
rules (1942) and the recently developed Åström-Hägglund tuning rules (1995). The
applicants believe that the new tuning rules and controllers satisfy the statutory
requirement of being “improved” and “useful.” They are certainly “new.” Because
they contain features that would never occur to an experienced control engineer,
they are certainly “unobvious” to someone “having ordinary skill in the art.”

22 Genetic Programming IV



If (as expected) a patent is granted, it will (we believe) be the first patent granted for
an invention created by genetic programming. For further discussion of the potential
of genetic programming as an invention machine, see Koza, Keane, and Streeter 2003.

1.3 Genetic Programming Can Automatically Create Parameterized
Topologies

Eleven problems in this book illustrate this book’s third main point, namely that
genetic programming can automatically create what we call parameterized topologies.
That is, genetic programming can automatically create, in a single run, a general
(parameterized) solution to a problem in the form of a graphical structure whose nodes
or edges represent components and where the parameter values of the components are
specified by mathematical expressions containing free variables.

In a parameterized topology, the genetically evolved graphical structure represents
a complex structure (e.g., electrical circuit, controller, network of chemical reactions,
antenna, genetic network). In the automated process, genetic programming determines
the graph’s size (its number of nodes) as well as the graph’s connectivity (specifying
which nodes are connected to each other). Genetic programming also assigns, in the
automated process, component types to the graph’s edges nodes or edges. In a circuit,
the component types are usually transistors, resistors, and capacitors. In a controller,
the components are integrators, differentiators, gain blocks, adders, subtractors,
and the like. In the automated process, genetic programming also creates mathematical
expressions that establish the parameter values of the components (e.g., the capaci-
tance of a capacitor in a circuit, the amplification factor of a gain block in a 
controller). Some of these genetically created mathematical expressions contain free
variables. The free variables confer generality on the genetically evolved solution 
by enabling a single genetically evolved graphical structure to represent a general
(parameterized) solution to an entire category of problems. The important point about
parameterized topologies is that genetic programming can do all the above in an 
automated way in a single run.

As an example, suppose the goal is to design a circuit to feed the woofer speaker
of a hi-fi system. That is, the desired circuit is intended to pass signals below a certain
frequency at full power into the woofer, but to suppress all higher frequencies.
Moreover, suppose that you want a general solution to this design problem. That is,
suppose you want a solution that works for any cutoff frequency f—not just a solution
that works for, say, 1,000 Hertz. A genetically evolved general solution to this prob-
lem is shown later in this book (in figure 10.9). The general solution produced 
by genetic programming includes the circuit’s topology. The genetically evolved
parameterized circuit has nine components. The general solution includes the type of
each of the nine components. There are five capacitors and four inductors in figure
10.9. The connections between the nine components are automatically created during
the run of genetic programming. The problem’s free variable, f, is an input to the
genetically evolved solution. The genetically evolved solution is general because 
the capacitance of the five capacitors and the inductance of the four inductors are not
constant, but instead, are functions of the free variable f. That is, the general solution

Introduction 23



produced by genetic programming includes nine different mathematical expres-
sions—each containing the free variable f. For example, one of the nine mathematical
expressions is

C2�
1.6786�105

f

When all nine mathematical expressions are instantiated with a particular value of the
free variable, f, the resulting circuit is a lowpass filter whose passband boundary is f.
The numerical values of certain components could be constant (although none of the
values happen to be constant in this particular case). The advantage of a parameter-
ized topology is it is a general solution to the problem—not just a solution to a single
instance of the problem.

If the genetically evolved program additionally contains conditional developmen-
tal operators, different graphical structures will, in general, be produced for different
instantiations of the free variable. That is, the genetically evolved program will 
operate as a genetic switch. Depending on the values of the free variable, different
graphical structures will result from the execution of the best-of-run program. The
numerical values for all parameterized components in the graphical structure will also
be established by the execution of the program.

The capability of genetic programming to automatically create parameterized
topologies is demonstrated in this book by the automatic synthesis of

● a parameterized controller for controlling a three-lag plant whose time constant is
specified by a free variable (section 9.1),

● a parameterized controller for controlling plants belonging to two different families
(section 9.2),

● three parameterized controllers for controlling industrially representative plants
(chapter 13),

● a parameterized circuit-constructing program tree containing two free variables that
yields a Zobel network (section 10.2),

● a parameterized circuit-constructing program tree that yields a passive third-order
elliptic lowpass filter whose modular angle is specified by a free variable (section
10.3),

● a parameterized circuit-constructing program tree that yields an active lowpass fil-
ter whose passband boundary is specified by a free variable (section 10.5),

● a parameterized circuit-constructing program tree that yields a passive lowpass fil-
ter whose passband boundary is specified by a free variable (section 10.4),

● a parameterized circuit-constructing program tree containing conditional develop-
mental operators and free variables that yields either a lowpass or highpass passive
filter (section 11.1),

● a parameterized circuit-constructing program tree containing conditional develop-
mental operators and free variables that yields either a lowpass passive filter with a
variable passband boundary or a highpass passive filter with a variable passband
boundary (section 11.2),

● a parameterized circuit-constructing program tree containing conditional develop-
mental operators and free variables that yields either a quadratic or cubic computa-
tional circuit (section 11.3), and

24 Genetic Programming IV



● a parameterized circuit-constructing program tree containing conditional develop-
mental operators and free variables that yields either a 40 dB or 60 dB amplifier
(section 11.4).

These 11 examples establish this book’s third main point.

1.4 Historical Progression of Qualitatively More Substantial Results 
Produced by Genetic Programming in Synchrony with Increasing 
Computer Power

Numerous questions naturally arise in connection with any proposed approach to
machine intelligence.

● Is the method formulated with sufficient precision to enable it to be implemented
(or is it vagueware)?

● Has the method been successfully demonstrated on a specific single problem (or is
it promiseware)?
● Was the method applied to a difficult demonstrative problem (or is it toyware)?
● Did the method top out after succeeding on a single demonstrative problem?

● Has the method solved multiple problems (or is it soloware)?
● Are the multiple problems difficult?
● Did the method top out at this stage?

● Has the method solved problems from multiple domains (or is it nicheware)?
● Are the domains difficult?
● Did the method top out at this stage?

● Were the results human-competitive?
● Can the method profitably take advantage of the increased computational power

available by means of parallel processing (or is it serialware)?
● Or, is the method Mooreware—able to take advantage of the exponentially increas-

ing computational power made available by the relentless iteration of Moore’s law?

Genetic Programming: On the Programming of Computers by Means of Natural
Selection (Koza 1992a) demonstrated that genetic programming is not vagueware,
promiseware, soloware, or nicheware.

The numerous human-competitive results discussed in this book establish that it is
not toyware.

This book’s fourth main point is based on a historical perspective on the progres-
sion of results produced by genetic programming over the 15-year period between
1987 and 2002.

Table 1.4 (described in greater detail in section 18.1) lists the five computer 
systems used to produce our group’s reported work on genetic programming in the 
15-year period between 1987 and 2002. Column 7 shows the number of human-
competitive results (as defined in table 1.2 and itemized in table 1.3) generated by
each computer system.

The first entry in the table is a serial computer. The four subsequent entries are
parallel computer systems. The presence of four increasingly powerful parallel com-
puter systems in the table reflects the fact that genetic programming has successfully

Introduction 25



taken advantage of the increased computational power available by means of parallel
processing. That is, genetic programming is not serialware.

Table 1.4 shows the following:

● There is an order-of-magnitude increase speed-up (column 4) between each suc-
cessive computer system in the table. Note that, according to Moore’s law (Moore
1996), exponential increases in computer power correspond approximately to con-
stant periods of time.

● There is a 13,900-to-1 speed-up (column 5) between the fastest and most recent
machine (the 1,000-node parallel computer system used for most of the work in this
book) and the slowest and earliest computer system in the table (the serial LISP
machine).

● The slower early machines generated few or no human-competitive results, whereas
the faster more recent machines have generated numerous human-competitive results.

Four successive order-of-magnitude increases in computer power are explicitly
shown in table 1.4. An additional order-of-magnitude increase was achieved by the
expedient of making extraordinarily long runs on the largest machine in the table 
(the 1,000-node Pentium® II parallel machine). The length of the run that produced

26 Genetic Programming IV

Table 1.4 Number of human-competitive results produced by genetic programming with five
computer systems between 1987 and 2002

Petacycles Speed-up Speed-up
(1015 cycles) over over first Human-

Period of per day for previous system in Used for work in competitive
System usage entire system system this table book results

Serial Texas 1987– 0.00216 1 (base) 1 (base) Genetic 0
Instruments 1994 Programming I
LISP machine and Genetic

Programming II

64-node 1994– 0.02 9 9 A few problems in 2
Transtech 1997 Genetic
transputer Programming III
parallel
machine

64-node 1995– 0.44 22 204 Most problems in 12
Parsytec 2000 Genetic
parallel Programming III
machine

70-node Alpha 1999– 3.2 7.3 1,481 A minority (8) of 2
parallel 2001 problems in this
machine book

1,000-node 2000– 30.0 9.4 13,900 A majority (28) of 12
Pentium II 2002 the problems in
parallel this book
machine



the genetically evolved controller described in section 13.2.3 was 28.8 days—almost
an order-of-magnitude increase (9.3 times) over the 3.4-day average for other prob-
lems described in this book (table 17.1). A patent application was filed for the con-
troller produced by this four-week run (Keane, Koza, and Streeter 2002a). This
genetically evolved controller outperforms controllers employing the widely used
Ziegler-Nichols tuning rules and the recently developed Åström-Hägglund tuning
rules. If the final 9.3-to-1 increase in table 1.5 is counted as an additional speed-up,
the overall speed-up between the first and last entries in the table is 130,660-to-1.

Table 1.5 (described in greater detail in sections 18.2 and 18.3) is organized
around the five just-explained order-of-magnitude increases in the expenditure of
computing power. Column 4 of table 1.5 characterizes the qualitative nature of the

Introduction 27

Table 1.5 Progression of qualitatively more substantial results produced by genetic
programming in relation to five order-of-magnitude increases in computational power

Speed-up
over
previous

Period of row in Qualitative nature of the results produced by genetic
System usage this table programming

Serial Texas 1987–1994 1 (base) ● Toy problems of the 1980s and early 1990s from the fields
Instruments of artificial intelligence and machine learning
LISP machine

64-node 1994–1997 9 ● Two human-competitive results involving one-dimensional
Transtech discrete data (not patent-related)
transputer
parallel
machine

64-node 1995–2000 22 ● One human-competitive result involving two-dimensional
Parsytec discrete data
parallel ● Numerous human-competitive results involving continuous
machine signals analyzed in the frequency domain

● Numerous human-competitive results involving 20th-century
patented inventions

70-node Alpha 1999–2001 7.3 ● One human-competitive result involving continuous signals
parallel analyzed in the time domain
machine ● Circuit synthesis extended from topology and sizing to

include routing and placement (layout)

1,000-node 2000–2002 9.4 ● Numerous human-competitive results involving continuous
Pentium II signals analyzed in the time domain
parallel ● Numerous general solutions to problems in the form of
machine parameterized topologies

● Six human-competitive results duplicating the functionality
of 21st-century patented inventions 

Long (4-week) 2002 9.3 ● Generation of two patentable new inventions
runs of 1,000-
node Pentium
II parallel
machine



28 Genetic Programming IV

results produced by genetic programming. The table shows the progression of quali-
tatively more substantial results produced by genetic programming in terms of five
order-of-magnitude increases in the expenditure of computational resources.

The order-of-magnitude increases in computer power shown in table 1.5 corre-
spond closely (albeit not perfectly) with the following progression of qualitatively
more substantial results produced by genetic programming:

● toy problems,
● human-competitive results not related to patented inventions,
● 20th-century patented inventions,
● 21st-century patented inventions, and
● patentable new inventions.

In other words, genetic programming is able to take advantage of the exponen-
tially increasing computational power made available by iterations of Moore’s law—
that is, it is Mooreware.

These results (explained in greater detail in chapter 18) establish this book’s fourth
main point: Genetic programming has delivered a progression of qualitatively more
substantial results in synchrony with five approximately order-of-magnitude increases
in the expenditure of computer time.


