
Chapter 8

EVOLVED QUANTUM PROGRAMS

This chapter presents examples of the automatic production of quan-
tum computer programs via genetic programming. These examples
demonstrate how the techniques described in previous chapters can be
applied to specific problems. They also provide evidence for the claim
that scientifically significant results can be produced via automatic quan-
tum computer programming.

The examples that are presented here are solutions to two types of
problems. We call problems of the first type “Boolean oracle analysis”
problems because they require us to determine some property of a pro-
vided Boolean quantum gate. This gate is often called an “oracle” or
a “black box” because we are given little a priori information about
the gate’s construction or behavior. All of these oracles are “Boolean”
in the sense that they act by inverting a particular single output qubit
when provided with specified combinations of inputs. We are allowed to
use the oracle gate, but we are not told in advance which combinations
of inputs will produce the inversion — that is what a solution to the
problem will tell us. Sometimes we may be “promised” that the oracle
is one of some subset of the possible Boolean oracles of the given size;
in these cases the problem is to determine which member of the subset
we have been given.

An example of a Boolean oracle analysis problem is Grover’s database
search problem, which was discussed earlier in Chapter 2. In Grover’s
problem the oracle represents a database containing a single “marked”
item. We are promised that the oracle inverts its output for a single com-
bination of inputs, which may be considered the address of the marked
item. Our task is to determine which of the possible inputs it is for
which the inversion is performed.

87

This document contains pages extracted from Automatic Quantum Computer
Programming: A Genetic Programming Approach, by Lee Spector (Kluwer
Academic Publishers, 2004). Only those pages which were used to document
the associated entry in competition for "Human-Competitive Awards in
Genetic and Evolutionary Computation" at the 2004 Genetic and Evolutionary
Computation Conference (GECCO-2004) have been included here. Please
note that pages unrelated to the competition entry have been removed, so
there are gaps in the flow of the text. For additional information, including
information on purchasing the complete book, see:
 http://hampshire.edu/lspector/aqcp/.

88 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Other examples presented below — the Deutsch-Jozsa (XOR) prob-
lem, the Majority-ON problem, and the OR and AND/OR problems —
are similar except that the “promises” that we are given about the ora-
cles and the features of the oracles that we are asked to determine vary
from problem to problem. For the Majority-ON problem we attempt
not just to solve a single instance of the problem but rather to produce
a scaling program that can solve instances of this problem of any size.

Several of these Boolean oracle analysis problems have practical sig-
nificance because their solutions directly enable us to solve difficult real-
world problems more rapidly than is possible on classical computers;
for example, Grover’s algorithm can be used to provide a quadratic
speedup for a host of problems that involve search through unstructured
databases.

The second type of problem considered here concerns the classical
communication capacity of certain specific quantum gates. The prob-
lems of this type that are presented derive from recent research on the
tradeoffs between classical communication and entanglement-generating
powers of certain unitary transformations (Spector and Bernstein, 2003;
Bennett et al., 2004). In these problems the task is to transfer informa-
tion from one set of qubits to another, without any direct connection
between the two sets of qubits aside from a single instance of the gate
under investigation. These problems are important not because they
have any direct practical application — the gates under consideration
do not generally correspond to any real-world communication channels
— but rather because their solutions contribute to the development of
the fundamental theory of quantum communication and computation.

Sections 8.1 through 8.5 describe specific problems, specific genetic
programming techniques that have been used to solve them, and inter-
esting features of evolved solutions. Particular emphasis is given to the
author’s techniques described in Chapters 6 and 7 as they have been
applied in specific cases. Section 8.6 discusses the general significance of
the results presented in Sections 8.1 through 8.5, both with respect to
the theory of quantum computation and with respect to techniques for
automatic quantum computer programming.

1. The 1-bit Deutsch-Jozsa (XOR) Problem

In the Deutsch-Jozsa problem (Deutsch and Jozsa, 1992) we are given
an oracle with some number of input qubits and one output qubit. We
are told that the oracle’s function is to invert its output qubit in certain
situations (that is, with certain Boolean inputs), and we are promised
that the oracle is either uniform, meaning that it either always or never

inverts its output qubit, or balanced, meaning that it will invert and

Evolved Quantum Programs 89

Table 8.1. Push interpreter parameters for the example run of PushGP on the
Deutsch-Jozsa (XOR) problem. Documentation of Push parameters and instructions
is available from http://hampshire.edu/lspector/push.html.

MAX-RANDOM-FLOAT 1.0
MIN-RANDOM-FLOAT -1.0

MAX-RANDOM-INTEGER 10
MIN-RANDOM-INTEGER -10

EVALPUSH-LIMIT 150
MAX-POINTS-IN-RANDOM-EXPRESSIONS 50

MAX-POINTS-IN-PROGRAM 100
MAX-ORACLE-CALLS 1

Types QGATE, FLOAT, CODE, BOOLEAN, INTEGER
Instructions (see Table 8.3)

not invert equal numbers of times if called on all possible (Boolean)
inputs. The task is to determine whether a given oracle is uniform or
balanced. Classically one would have to query the oracle several times
(up to one more than half the number of possible inputs) to be certain
of the answer, but quantum computers can do better. Although this
problem is not clearly related to any problems of practical significance,
it is of historical significance because it was one of the first problems to
be shown to be solvable with a better-than-classical quantum algorithm.

The use of genetic programming to re-discover the quantum program
that solves the 2-bit version of this problem (which uses an oracle with
4 possible inputs) is documented in (Spector et al., 1998) and (Spector
et al., 1999b).1 Here we document the use of genetic programming to
re-discover the quantum program that solves the simpler 1-bit version
of this problem. In this version of the problem the oracle has only 1
input qubit and hence two possible inputs (0 and 1). The oracle is
uniform, as in the general case, if it either always or never inverts its
output qubit. It is balanced in all other cases, in which it inverts its
output qubit for one but not the other of its 2 possible inputs. We are
therefore asked to determine the truth of the logical formula I0 ⊕ I1,
where I0 means “inverts with input 0,” I1 means “inverts with input 1,”
and ⊕ is the exclusive OR (XOR) function. The classical version of this
problem clearly requires two oracle queries; after a query with one input
it will not be known whether the result of a query with the other input
will match (meaning that the oracle is uniform) or not (meaning that

1In these references the Deutsch-Jozsa problem is referred to as Deutsch’s “early promise”
problem.

90 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

the oracle is balanced). By contrast a quantum program can solve this
problem with a single query.

This problem was easily solved using PushGP with the parameters
shown in Tables 8.1 and 8.2 and the instruction set shown in Table 8.3,
running under the OpenMCL open source Common Lisp system2 on a
1.33 GHz Apple Macintosh laptop computer with a PowerPC G4 chip.
The complete source code for this run, along with the output log, is
available online.3

The fitness of a Push program was assessed by running it once to
produce a QGAME program (which began with the empty “embryo”
corresponding to the gate array shown in Figure 8.1), and by testing the
QGAME program with the TEST-QUANTUM-PROGRAM function described
in Chapter 3. The maximum permitted number of oracle calls per case
(and therefore the first argument in all calls to LIMITED-ORACLE) was
1, so that only the first oracle call in any developed QGAME program
would have any effect. The inputs provided to TEST-QUANTUM-PROGRAM

were:

PROGRAM: The developmental result of executing the chromosomal
Push program.

NUM-QUBITS: 2

CASES: (((0 0) 0) ((0 1) 1) ((1 0) 1) ((1 1) 0))

FINAL-MEASUREMENT-QUBITS: (1)

THRESHOLD: 0.48

Fitness was computed as the sum of the number of misses (the first re-
turn value from TEST-QUANTUM-PROGRAM) and the maximum probability
of error on any single case (the second return value).

The fitness of the best program in the first, random generation (“gen-
eration 0”) was 3.0. Fitness improved rapidly thereafter, including a
steep drop at generation 9 when the number of misses of the best pro-
gram dropped from 2 to 0. At generation 18 a perfect solution was
found, with a fitness value of 0 aside from a miniscule round-off error of
4.4 × 10−16. A plot of the fitness of the best individual per generation
is shown in Figure 8.2.

2http://openmcl.clozure.com/
3http://hampshire.edu/lspector/aqcp/evolved-xor/

Evolved Quantum Programs 91

Table 8.2. PushGP genetic programming system parameters for the example run of
PushGP on the Deutsch-Jozsa (XOR) problem.

MAX-NEW-POINTS-IN-MUTANTS 20
POPULATION-SIZE 10,000
TOURNAMENT-SIZE 7

MUTATION-PROBABILITY 0.45
CROSSOVER-PROBABILITY 0.45

MUTATION-OPERATORS FAIR, PERTURB, ADD, REMOVE
CROSSOVER-OPERATORS FAIR

FITNESS-FUNCTION misses + max probability of error

Table 8.3. Instructions used in the example run of PushGP on the 1-bit Deutsch-
Jozsa (XOR) problem.

INTEGER INTEGER.FROMBOOLEAN, INTEGER.FROMFLOAT, INTEGER.>, INTEGER.<,
INTEGER.%, INTEGER./, INTEGER.*, INTEGER.-, INTEGER.+,
INTEGER.STACKDEPTH, INTEGER.SHOVE, INTEGER.YANKDUP,
INTEGER.YANK, INTEGER.=, INTEGER.SWAP, INTEGER.POP, INTEGER.DUP

BOOLEAN BOOLEAN.FROMFLOAT, BOOLEAN.FROMINTEGER, BOOLEAN.NOT,
BOOLEAN.OR, BOOLEAN.AND, BOOLEAN.STACKDEPTH, BOOLEAN.SHOVE,
BOOLEAN.YANKDUP, BOOLEAN.YANK, BOOLEAN.=, BOOLEAN.SWAP,
BOOLEAN.POP, BOOLEAN.DUP

CODE CODE.DISCREPANCY, CODE.DO, CODE.NTHCDR, CODE.NTH, CODE.APPEND,
CODE.LIST, CODE.NOOP, CODE.IF, CODE.DO*, CODE.CONS, CODE.CDR,
CODE.CAR, CODE.NULL, CODE.ATOM, CODE.QUOTE, CODE.STACKDEPTH,
CODE.SHOVE, CODE.YANKDUP, CODE.YANK, CODE.=, CODE.SWAP,
CODE.POP, CODE.DUP

FLOAT FLOAT.FROMBOOLEAN, FLOAT.FROMINTEGER, FLOAT.TAN, FLOAT.COS,
FLOAT.SIN, FLOAT.>, FLOAT.<, FLOAT.%, FLOAT./, FLOAT.*, FLOAT.-,
FLOAT.+, FLOAT.STACKDEPTH, FLOAT.SHOVE, FLOAT.YANKDUP,
FLOAT.YANK, FLOAT.=, FLOAT.SWAP, FLOAT.POP, FLOAT.DUP

QGATE QGATE.END, QGATE.MEASURE, QGATE.U2, QGATE.CPHASE, QGATE.SWP,
QGATE.CNOT, QGATE.QNOT, QGATE.SRN, QGATE.U-THETA,
QGATE.HADAMARD, QGATE.LIMITED-ORACLE, QGATE.GATE,
QGATE.TRANSPOSE, QGATE.COMPOSE, QGATE.STACKDEPTH, QGATE.SHOVE,
QGATE.YANKDUP, QGATE.YANK, QGATE.=, QGATE.SWAP,
QGATE.POP, QGATE.DUP

92 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

1

0

Figure 8.1. Gate array diagram for the empty “embryo” with which development
begins for the solution to the Deutsch-Jozsa (XOR) problem. The only gate in the
embryo performs a measurement of qubit 1; this need not even appear explicitly in
the developed QGAME program as the call to TEST-QUANTUM-PROGRAM will specify
that the final measurement will be performed on qubit 1. The developmental process
will add gates from left to right, ending just before the measurement.

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

F
itn

es
s

Generation

Figure 8.2. A plot of the fitnesses of the best individuals in each generation during
a run of PushGP on the 1-bit Deutsch-Jozsa (XOR) problem.

Evolved Quantum Programs 93

Execution was aborted at generation 20, at which time the best re-
ported program was as follows:

((BOOLEAN.= INTEGER.> CODE.DO*) ((FLOAT.TAN (FLOAT.<

(BOOLEAN.DUP (BOOLEAN.POP BOOLEAN.SHOVE INTEGER.-

QGATE.CPHASE (CODE.CAR CODE.LIST TRUE)))) (CODE.NULL

((CODE.APPEND) FLOAT.= (BOOLEAN.DUP BOOLEAN.DUP))))

CODE.CDR ((BOOLEAN.YANKDUP INTEGER.* BOOLEAN.=)

(0.16907119750976562D0) -2 (QGATE.SRN QGATE.STACKDEPTH

(QGATE.HADAMARD (QGATE.GATE CODE.STACKDEPTH)) CODE.NULL

(BOOLEAN.SWAP) (INTEGER.YANKDUP BOOLEAN.OR

(((QGATE.TRANSPOSE) CODE.NULL (QGATE.CPHASE INTEGER.>)

CODE.LIST) (QGATE.GATE ((-5 (FLOAT.STACKDEPTH)) CODE.YANK

BOOLEAN.POP))) (INTEGER.DUP)) QGATE.LIMITED-ORACLE))

(FLOAT.% QGATE.STACKDEPTH QGATE.GATE (((5 CODE.SWAP)

QGATE.LIMITED-ORACLE) FLOAT.YANK) FLOAT.SWAP FLOAT.TAN)

(TRUE)) (INTEGER.* (QGATE.SWP FLOAT.STACKDEPTH BOOLEAN.OR

CODE.CDR) BOOLEAN.STACKDEPTH))

Regardless of how this Push program is formatted, it is not clear from
visual inspection how it works (and it has therefore been presented in
the most economical format). Execution of this program produces, via
development, the following QGAME program (as expressed in Lisp no-
tation, where “#2A” indicates a 2-dimensional matrix, and with floating
point numbers rounded to 4 decimal places):

((MATRIX-GATE #2A((0.7071 0.0 0.7071 0.0)

(0.0 0.7071 0.0 0.7071)

(0.7071 0.0 -0.7071 0.0)

(0.0 0.7071 0.0 -0.7071))

((HADAMARD 1)))

(MATRIX-GATE #2A((0.7071 0.7071 0.0 0.0)

(-0.7071 0.7071 0.0 0.0)

(0.0 0.0 0.7071 0.7071)

(0.0 0.0 -0.7071 0.7071))

(TRANSPOSED ((SRN 0))))

(LIMITED-ORACLE 1 ORACLE-TT 1 0)

(LIMITED-ORACLE 1 ORACLE-TT 0 1)

(MATRIX-GATE #2A((0.7071 0.0 0.7071 0.0)

(0.0 0.7071 0.0 0.7071)

(0.7071 0.0 -0.7071 0.0)

(0.0 0.7071 0.0 -0.7071))

((HADAMARD 1))))

94 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

1

0

fH H

SRN

Figure 8.3. Gate array diagram for an evolved solution to the Deutsch-Jozsa (XOR)
problem. The “f” gate is the oracle. The “SRN” gate with the diagonal line through
it on qubit 0 transposed Square Root of NOT gate.

The second oracle call is redundant and can be removed; since the
oracle limit is 1 a second call to LIMITED-ORACLE will have no effect.
The first and final gates are simply HADAMARD gates applied to qubit 1,
while the second gate is a transposed SRN (“square root of NOT”; see
Chapter 2) gate. The final evolved, developed and simplified quantum
program is diagrammed in Figure 8.3. This program solves the 1-bit
version of the Deutsch-Jozsa (XOR) problem with 100% certainty using
only a single oracle call.

How does this evolved solution solve the 1-bit Deutsch-Jozsa (XOR)
problem? The mathematical explanation is straightforward — one needs
only to construct and multiply all of the matrices — but it is difficult
to provide an intuitive explanation even for such a simple quantum al-
gorithm. The basic idea is indeed intuitive, however: the algorithm first
puts both qubits into superpositions of |0〉 and |1〉 and then calls the or-
acle once on this superposition, extracting information about both clas-
sical inputs in a single call. This information must then be “decoded”
from the resulting superposition by means of an additional HADAMARD
gate, which reverses the effect of the HADAMARD gate prior to the oracle.
Note that the final measurement is made on the qubit that is nominally
the input to the oracle call, while the nominal output is ignored. This
highlights one of the ways in which quantum gate arrays differ from clas-
sical logic circuits.4 The oracle call in this case modifies qubit 0, but in
doing so it changes every amplitude in the system state. Through this
action (which is sometimes called the “back action” of a quantum gate)
it changes the effect of the final HADAMARD on qubit 1, leading to the
measurement of the correct answer for both possible inputs.

4The potential deceptiveness of quantum gate array diagrams that results from such differ-
ences was discussed in Chapter 3.

Evolved Quantum Programs 95

2. Grover’s Database Search Problem
Grover’s database search problem was described above in Chapters

1 and 2, the latter of which included a detailed presentation of one
solution to the 4-item version of this problem. Grover’s problem is an
oracle problem, much like the Deutsch-Jozsa problem, except that the
“promise” we are given regarding the oracle is different and the task is
not just to distinguish two classes of oracles (uniform vs. balanced) but
rather to determine exactly which of the possible oracles we have been
given.

More specifically, we are promised, in the instance of the problem
considered here, that the oracle will invert its output for one and only
one input. Our task is to determine which input it is that produces the
inversion. This is described as a database problem because we may think
of the oracle as a database, for which all of the possible inputs are ad-
dresses, and we may think of the output inversion as an answer of “yes”
to a database query for a marked item. Under this interpretation we
are promised that we have been given a database containing a marked
item at one and only one address, and we are asked to determine the
address of that item using as few calls to the database query function
(oracle) as possible. The number of queries required for a classical pro-
gram to solve this problem with an n-item database is n−1 in the worst
case, but Grover’s algorithm can find the marked item in approximately√
n queries. For the 4-item database considered here Grover’s algorithm

requires only a single database query.
Techniques similar to those described above for the Deutsch-Jozsa

problem also permit evolution of a solution to the 4-item database search
problem.5 Because the oracle is in this case a 3-qubit gate (two input
qubits and one output qubit), one must use a quantum computer with
at least 3 qubits. One must also designate two qubits for final measure-
ments, rather than the one qubit required for Deutsch-Jozsa, since one
must be able to read a 2-bit address (0, 1, 2, or 3) from the measurement
qubits at the end of the simulation. The cases on which programs are
tested for fitness are:

(((1 0 0 0) 0)

((0 1 0 0) 1)

((0 0 1 0) 2)

((0 0 0 1) 3))

5The evolution of a solution to this problem using using “stackless linear genome genetic
programming,” as described in Chapter 7, is documented in (Spector et al., 1999b).

96 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Table 8.4. Push interpreter parameters for the example run of PushGP on the 4-
item database search problem. Documentation on Push parameters and instructions
is available from http://hampshire.edu/lspector/push.html.

MAX-RANDOM-FLOAT 10.0
MIN-RANDOM-FLOAT -10.0

MAX-RANDOM-INTEGER 10
MIN-RANDOM-INTEGER -10

EVALPUSH-LIMIT 250
MAX-POINTS-IN-RANDOM-EXPRESSIONS 50

MAX-POINTS-IN-PROGRAM 100
MAX-ORACLE-CALLS 1

Types QGATE, FLOAT, CODE, INTEGER
Instructions (see Table 8.6)

Table 8.5. PushGP genetic programming system parameters for the example run of
PushGP on the 4-item database search problem.

MAX-NEW-POINTS-IN-MUTANTS 20
POPULATION-SIZE 25,000 (× 10 demes)
TOURNAMENT-SIZE 5

MUTATION-PROBABILITY 0.45
CROSSOVER-PROBABILITY 0.45

IMMIGRATION-PROBABILITY 0.005
MUTATION-OPERATORS FAIR, GAUSSIAN-PERTURB, ADD, REMOVE
CROSSOVER-OPERATORS STANDARD, FAIR

FITNESS-FUNCTION 10 × misses + max probability of error

This means that the answer, to be assembled from the measured values
of two qubits (we’ll specify these to be qubits 1 and 2, specifying the
high-order and low-order bits of the answer respectively), should be 0 if
the location of the marked item is (0, 0), 1 if the location is (0, 1), 2 if
the location is (1, 0), and 3 if the location is (1, 1).

This problem was solved using PushGP with the parameters shown in
Tables 8.4 and 8.5 and the instruction set shown in Table 8.6, running
under the CMUCL open source Common Lisp system6 on a 10-CPU
cluster of 2.1GHZ Linux workstations. The complete source code for
this run, along with the output logs, is available online.7

6http://www.cons.org/cmucl/
7http://hampshire.edu/lspector/aqcp/evolved-grover/

Evolved Quantum Programs 97

Table 8.6. Instructions used in the example run of PushGP on the 4-item database
search problem.

INTEGER INTEGER.FROMFLOAT, INTEGER./, INTEGER.*, INTEGER.-,
INTEGER.+, INTEGER.SWAP, INTEGER.POP, INTEGER.DUP

CODE CODE.DO*COUNT, CODE.DO*TIMES, CODE.FROMFLOAT,
CODE.FROMINTEGER, CODE.DO, CODE.NTHCDR, CODE.NTH,
CODE.APPEND, CODE.LIST, CODE.NOOP, CODE.IF,
CODE.DO*, CODE.CONS, CODE.CDR, CODE.CAR,
CODE.QUOTE, CODE.SWAP, CODE.POP, CODE.DUP

FLOAT FLOAT.FROMINTEGER, FLOAT./, FLOAT.*, FLOAT.-,
FLOAT.+, FLOAT.SWAP, FLOAT.POP, FLOAT.DUP

QGATE QGATE.END, QGATE.MEASURE, QGATE.CPHASE, QGATE.SWP,
QGATE.CNOT, QGATE.QNOT, QGATE.U-THETA, QGATE.HADAMARD,
QGATE.LIMITED-ORACLE, QGATE.GATE, QGATE.TRANSPOSE,
QGATE.COMPOSE, QGATE.SWAP, QGATE.POP, QGATE.DUP

The 10-CPU cluster was utilized by means of a scheme of “demes”
like that described briefly in Chapter 4. PushGP was started on each
of the nodes and the 10 runs were allowed to proceed asynchronously.
After the fitness-testing step of each generation a pool of emigrants,
consisting of 125 individuals (0.5% of the population size of 25, 000)
selected via fitness tournaments (with tournament size 5), was written
to a shared file system, replacing any previous pool of emigrants from the
same node. Following emigration, a randomly selected file of emigrants
on the shared file system (which may have come from the same node or
from a different node) is read and becomes the pool of immigrants from
which the IMMIGRATION genetic operator will randomly select individuals
in the next offspring-production step. If the attempt to read a file of
emigrants from the shared file system fails for any reason (for example
because of network problems) then the IMMIGRATION operator will act
as a reproduction operator, producing clones of individuals from the
current population.

This run also utilized the matrix literalization scheme discussed in
Chapter 7. After the fitness-testing step of each generation the Push
programs were processed in order of fitness (best first) until at least 10
matrix literals were obtained. This was accomplished by re-evaluating
each Push program to produce, via development, a QGAME program,
and by compressing strings of matrices in the developed QGAME pro-
gram to produce compressed matrix literals. These literals were then
available for inclusion in mutations performed during the next offspring-
production step. In addition, this run utilized a GAUSSIAN-PERTURB

98 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

1

0

2

high

low

Figure 8.4. Gate array diagram for the empty “embryo” with which development
begins for the solution to the database search problem. The only gates in the embryo
perform measurement of qubits 1 (the high order bit of the answer) and 2 (the low
order bit of the answer). The developmental process will add gates from left to right,
ending just before the measurements.

genetic operator, the idea for which was described in Chapter 7. When
this operator is chosen for a particular instance of mutation,8 a child is
produced from the parent by adding mean 0, standard deviation 0.01
Gaussian noise to each floating-point literal in the parent.

As with the Deutsch-Jozsa example in the previous section, the fit-
ness of a Push program was assessed by running it once to produce a
QGAME program (which began in this case with the empty “embryo”
corresponding to the gate array shown in Figure 8.4), and by testing the
QGAME program with the TEST-QUANTUM-PROGRAM function described
in Chapter 2. The maximum permitted number of oracle calls per case
was again 1, so that only the first oracle call in any developed QGAME

program would have any effect. The fitness cases were those listed above
and the threshold for a “miss” was again 0.48. Fitness was computed
as the sum of 10 times the number of misses (the first return value from
TEST-QUANTUM-PROGRAM) and the maximum probability of error for any
one case (the second return value from TEST-QUANTUM-PROGRAM); this
is the “lexicographic” fitness component combination scheme that was
discussed in Chapter 7.

The fitnesses over the 10 demes are plotted in Figure 8.5. The elimi-
nation of “misses” is clearly visible as large drops in fitness values, which
are lexicographic combinations of misses (× 10) and maximum proba-
bility of error per case. Fitness improvements within particular levels
of misses are obscured by the scale, but Figure 8.6 shows the additional
detail at the level of zero misses. The first deme to achieve a perfect
fitness value of zero did so at generation 113, while the last deme to
achieve a perfect fitness value did so at generation 152. The last of these

8In PushGP, a random one of the specified mutation operators is selected for each instance
of mutation. Similarly for crossover: if multiple operators are specified then each instance of
crossover uses a randomly selected crossover operator.

Evolved Quantum Programs 99

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160

F
itn

es
s

Generation

Figure 8.5. A plot of the fitnesses of the best individuals in each generation during
a run of PushGP on the 4-item database search problem. This figure is dominated
by the large drops due to the decreases in the “misses” component of the fitness
function; it shows the overall structure of the evolutionary process but not the fine
structure of fitness improvements at each level. Figure 8.6 shows a closer view of
the improvements in fitness after all of the misses were eliminated. This run was
conducted on a cluster of 10 computers that ran asynchronously, sharing individuals
between generations (see text), and a line appears in the graph for each of the 10 runs.
Because the individual runs ran asynchronously they reached particular generations
at different times and one must be careful when inferring relations between runs from
this graph; for example, an event that appears to the right of another event may
actually have preceded that other event in time, and may even have influenced that
other event via migration.

perfect-fitness individuals was chosen, arbitrarily, as the basis for the
following analysis.

The evolved solution Push program contained 100 points, which was
the maximum permitted.9 The average number of points in the popula-
tion that included this solution was 80.5, and the median fitness in this
population was 0.0026. The solution Push program contained 5 unitary
matrix literals, produced via the matrix literalization process described
above, some of which were derived from other matrix literals earlier in

9Each instruction, literal, and pair of parentheses counts as one point.

100 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100 120 140 160

F
itn

es
s

Generation

Figure 8.6. A plot of the fitnesses of the best individuals in each generation during
a run of PushGP on the 4-item database search problem. This is a closer view of
the graph in Figure 8.5, showing the improvements in fitness after all of the “misses”
components of the fitness function were eliminated.

the evolutionary process. For example, one of the matrix literals is the
composition of two instances of another matrix literal, which in turn in-
cludes three instances of a matrix that appears to have been produced by
an earlier matrix literalization process. The inclusion of the matrix lit-
erals makes the printed representation of this Push program quite large
(3, 458 characters, not counting spaces); it is therefore not included here,
although it can be found online.10

Execution of the evolved Push program produces, via development, a
QGAME program consisting of 18 matrix gates. Some of the matrices
in these gates appeared in the Push program as matrix literals, but
others were produced by the execution of the Push program either from
primitive gates or from matrix literals. For example, one matrix in
the developed QGAME program is a transposed version of one of the
matrix literals in the Push program. Another matrix in the developed
QGAME program is a transposed version of one of the matrix literals in

10See http://hampshire.edu/lspector/aqcp/evolved-grover/, at the end of the log file
pushgp-output.n01.bw01.hampshire.edu.

Evolved Quantum Programs 101

the Push program that has also been augmented by an additional QNOT
gate. Again, because the textual version of this this program is verbose
it is not included here.

As in the Deutsch-Jozsa example in the previous section, some of
the gates in the final QGAME program are unnecessary and can be
pruned from the result. Of particular interest in the present case is the
fact that two of the gates, although they include matrix literals with
rather complex histories, combine the matrices from those histories to
produce identity operations; components of these histories are also used
elsewhere in the final QGAME program to greater effect. The final
QGAME program, after hand pruning and with the matrices removed
for legibility, is as follows:

((HADAMARD 1)

(MATRIX-GATE <matrix1> <history1>)

(HADAMARD 1)

(HADAMARD 0)

(MATRIX-GATE <matrix2> <history2>)

(LIMITED-ORACLE 1 ORACLE-TT 2 1 0)

(HADAMARD 2)

(MATRIX-GATE <matrix3> <history3>)

(MATRIX-GATE <matrix4> <history4>)

(HADAMARD 1))

The matrix indicated as <matrix1> is just a transposed version of the
matrix indicated as <matrix2>, which has the following history:

((COMPRESSED

((COMPRESSED ((U-THETA 2 1.233552982796235)))

(COMPRESSED

((COMPRESSED ((QNOT 0))) (COMPRESSED ((CNOT 1 2))))))))

The matrix indicated as <matrix3> has the following history:

((COMPRESSED ((HADAMARD 1)))

(COMPRESSED

((COMPRESSED

(TRANSPOSED ((U-THETA 1 1.0642909109545906))))))

(COMPRESSED

((COMPRESSED

(TRANSPOSED ((U-THETA 1 1.0642909109545906))))))

(COMPRESSED

((COMPRESSED

(TRANSPOSED ((U-THETA 1 1.0642909109545906)))))))

102 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

1

0

H H

2

H

M1

f
H

M2

H
high

low

1

0

2 U(1.234)

1

0

2

M1

M2

H

M1 M2

U(3.1929)

low

high

Figure 8.7. A gate array diagram for an evolved version of Grover’s database search
algorithm for a 4-item database. The full gate array is shown at the top, with M1

and M2 standing for the smaller gate arrays shown at the bottom. A diagonal line
through a gate symbol indicates that the matrix for the gate is transposed. The “f”
gate is the oracle.

The matrix indicated as <matrix4> is a transposed version of the
matrix indicated as <matrix3>, to which a QNOT gate has also been
added on qubit 2.

The resulting quantum gate array is diagrammed in Figure 8.7. M1 in
the figure corresponds to <matrix2> and M2 corresponds to <matrix3>;
the contents of each of these matrices are indicated in the smaller gate
array diagrams in the bottom half of the figure. The transpositions in
matrices 1 and 4 are indicated by the diagonal lines, and the additional
QNOT gate that evolved as part of <matrix3> is drawn separately on the
qubit 2 line in the main diagram. This gate array solves the 4-item
database search problem with 100% certainty using only a single oracle
call. The evolved gate array exhibits several forms of modularity, some
of which were achieved via recursive matrix literalization and others of
which owe to the code-manipulation and matrix-manipulation facilities
of the Push instruction set used for this run.

How does this evolved solution work? At a general level of descrip-
tion the solution is the same as that presented in Section 3.3 above: a
superposed state is fed into the call to the oracle gate and subsequent
“decoding” gates extract the position of the marked item from the states

Evolved Quantum Programs 103

Table 8.7. Push interpreter parameters for the example run of PushGP on the Scal-
ing Majority-ON problem. Documentation on Push parameters and instructions is
available from http://hampshire.edu/lspector/push.html.

MAX-RANDOM-FLOAT 1.0
MIN-RANDOM-FLOAT -1.0

MAX-RANDOM-INTEGER 10
MIN-RANDOM-INTEGER -10

EVALPUSH-LIMIT 150
MAX-POINTS-IN-RANDOM-EXPRESSIONS 50

MAX-POINTS-IN-PROGRAM 100
MAX-ORACLE-CALLS 1

Types QGATE, FLOAT, CODE, BOOLEAN, INTEGER
Instructions (see Table 8.9)

in which the address qubits (as opposed to the output qubit) are left by
the action of the oracle. The solution presented here is, however, consid-
erably more complex than that presented in Section 3.3.11 Part of the
reason for this difference is that the result presented earlier was subjected
to further human editing,12 but part may also be due to an unfortunate
evolutionary accident early in the run presented here. The oracle call
in the evolved gate array uses qubit 2 as the high-order input and qubit
1 as the low-order input, while the measurements specified in the em-
bryo use the opposite designation. If the programs that achieved limited
success early in this run included the oracle call with this “backwards”
configuration, then it may have been easier for evolution to find improve-
ments that compensated for this configuration through additional gates
than through the substitution of an alternative oracle configuration. An-
other factor contributing to the complexity of this solution may be the
use of matrix literalization, which facilitates the evolution of quantum
programs containing complex modules; while this probably extends the
power of the automatic quantum computer programming system it may
also have the unfortunate side effect of encouraging the generation of
unnecessarily complex solutions.

11It is also considerably more complex than the solution evolved by the author previously
using other techniques (Spector et al., 1999b).
12The editing performed here was limited to the removal of gates that had no effect on the
result; further analysis may produce additional simplifications by substituting single gates
for groups of gates, etc.

108 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Table 8.10. Push interpreter parameters for the example runs of PushGP on the
OR and AND/OR problems. Documentation on Push parameters and instructions is
available from http://hampshire.edu/lspector/push.html.

MAX-RANDOM-FLOAT 1.0
MIN-RANDOM-FLOAT -1.0

MAX-RANDOM-INTEGER 9
MIN-RANDOM-INTEGER -10

EVALPUSH-LIMIT 150
MAX-POINTS-IN-RANDOM-EXPRESSIONS 50

MAX-POINTS-IN-PROGRAM 100
MAX-ORACLE-CALLS 1

Types QGATE, FLOAT, CODE, INTEGER
Instructions (see Table 8.12)

4. The OR and AND/OR Problems
The OR and AND/OR problems are oracle problems similar to the

XOR problem described above, but they ask us to determine a differ-
ent property of the oracles. The OR problem is identical to the XOR
problem except that we are asked to determine the truth of the logical
formula I0∨I1, where I0 means “inverts with input 0,” I1 means “inverts
with input 1,” and ∨ is the (inclusive) OR function. In the notation used
for QGAME’s TEST-QUANTUM-PROGRAM function, the cases that we use
to assess fitness are:

(((0 0) 0)

((0 1) 1)

((1 0) 1)

((1 1) 1))

In other words, we are asked to determine whether the oracle we have
been given ever inverts its output qubit, whether for a 0 input, or for a
1 input, or for both. This turns out to be a harder question to answer
than the XOR question (which omits the “or both”), and it is known
that there is no error-free single query solution.

But a quantum program can nonetheless do better than a classical pro-
gram on this problem, and genetic programming was used to discover a
quantum algorithm that performed better than any that had previously
been published. The evolved quantum program has a maximum prob-
ability of error of 1

10 . This is better than can be achieved using even
a probabilistic classical program, which must necessarily have a max-

Evolved Quantum Programs 109

Table 8.11. PushGP genetic programming system parameters for the example runs
of PushGP on the OR and AND/OR problems.

MAX-NEW-POINTS-IN-MUTANTS 10
POPULATION-SIZE 50,000 (× 13 demes)
TOURNAMENT-SIZE 7

MUTATION-PROBABILITY 0.48
CROSSOVER-PROBABILITY 0.48

IMMIGRATION-PROBABILITY 0.005
MUTATION-OPERATORS PERTURB, ADD, REMOVE

CROSSOVER-OPERATORS FAIR

SIZE-PRESSURE 2, IDEAL-SIZE= 50
FITNESS-FUNCTION if misses = 0 then:

0.1 × pmax

otherwise:

(0.1 × pmax) +

⌊

106 ×

∑

n

i=1

1

1+e−ψ(pi−0.48)

n

⌋

where:
n = number of fitness cases,
pi = probability of error for case i,
pmax = maximum probability of error,

and ψ = e(e+1)

imum probability of error of at least 1
6 . The evolved program, which

was originally produced using the LGP genetic programming system15

and a precursor to QGAME, is presented along with an analysis of the
problem’s classical and quantum complexity in (Spector et al., 1999a)
and (Barnum et al., 2000).

In this section we describe the more recent evolution of an equiv-
alent quantum algorithm using PushGP and QGAME. For this run
an alternative, stackless implementation of the QGATE data type was
used. There was no QGATE.GATE Push instruction and the execution of
Push instructions corresponding to primitive quantum gates (such as
QGATE.HADAMARD) sent QGAME instructions directly to the develop-
ing embryo. This decreased the amount of Push code required to build
simple QGAME programs, but it did not allow the Push program to
manipulate and store novel unitary matrices during development.

The implementation of QGATE.MEASURE in this run was also unusual.
The implementation used in the previous examples simply added an in-
struction expression, “(measure q),” to the developing embryo, with q
taken from the INTEGER stack (modulo the number of qubits in the sys-

15Available from http://helios.hampshire.edu/lspector/code.html.

110 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Table 8.12. Instructions used in the example runs of PushGP on the OR and
AND/OR problems. These runs used alternative implementations of the QGATE in-
structions (see text).

INTEGER INTEGER.MAX, INTEGER.MIN, INTEGER.%, INTEGER./, INTEGER.*,
INTEGER.-, INTEGER.+, INTEGER.STACKDEPTH, INTEGER.SHOVE,
INTEGER.YANKDUP, INTEGER.YANK, INTEGER.SWAP, INTEGER.POP,
INTEGER.DUP

CODE CODE.QUOTE, CODE.SWAP, CODE.POP, CODE.DUP

FLOAT FLOAT.TAN, FLOAT.COS, FLOAT.SIN, FLOAT.MAX, FLOAT.MIN,
FLOAT.%, FLOAT./, FLOAT.*, FLOAT.-, FLOAT.+,
FLOAT.STACKDEPTH, FLOAT.SHOVE, FLOAT.YANKDUP,
FLOAT.YANK, FLOAT.SWAP, FLOAT.POP, FLOAT.DUP

QGATE QGATE.MEASURE, QGATE.HALT, QGATE.U2, QGATE.CPHASE,
QGATE.SWP, QGATE.CNOT, QGATE.QNOT, QGATE.SRN,
QGATE.U-THETA, QGATE.HADAMARD, QGATE.LIMITED-ORACLE

tem). Subsequent calls to QGATE.END were required to complete the
branches of the computation for the two possible measurement out-
comes (0 and 1).16 For the present run an alternative implementation of
QGATE.MEASURE was used that ensures, assuming that the Push program
that contains it runs to completion, that all measurements are followed
by complete branches for both possible outcomes. QGATE.MEASURE does
this by taking two arguments from the CODE stack in addition to the
index of the qubit to be measured (which is taken from the INTEGER

stack). It then does the following:

Adds the MEASURE expression to the developing QGAME program.

Recursively executes one of the popped pieces of code (the one that
was deeper in the stack), possibly adding additional elements to the
developing QGAME program in the process.

Adds an (END) to the developing QGAME program.

Recursively executes the other popped piece of code, possibly adding
additional elements to the developing QGAME program.

Adds another (END) to the developing QGAME program.

The other parameters for this run are shown in Tables 8.10, 8.11, and
8.12. The SIZE-PRESSURE parameter referred to in Table 8.10 relates
to an experimental feature of PushGP that is intended to help control

16See page 26 for the syntax of measurement constructions in QGAME.

Evolved Quantum Programs 111

H

1

0 f

U(θ)

H

H

θ=5.96143477

U(θ)

0

1

Figure 8.9. A gate array diagram for an evolved solution to the OR oracle problem.
The gate marked “f” is the oracle. The two sub-diagrams on the right represent
the two possible execution paths following the intermediate measurement. In the
bottom sub-diagram the result of the intermediate measurement is 0 and the result
of the overall computation is read immediately from the other qubit. In the top
sub-diagram the result of the intermediate measurement is 1 and additional gates are
applied to the other qubit prior to the final measurement.

program bloat; when this feature is enabled each attempt to use a genetic
operator causes the operator to be called the indicated number of times
(2 in this case), producing that number of potential offspring. The single
offspring closest in size to the specified IDEAL-SIZE is chosen from these,
and the others are discarded.

The fitness function for programs that achieve zero misses is the max-
imum probability of error on any single fitness case times 0.1. For pro-
grams with misses, however, the fitness function is a lexicographic com-
bination of a sigmoid function (based on the differences between each
probability of error and the “miss threshold”) and the maximum proba-
bility of error. As discussed in Chapter 7, this sigmoid function provides
a smoother fitness landscape while still prioritizing the elimination of
misses, although the effectiveness of this measure has not been empiri-
cally tested.

The gate array in Figure 8.9 shows one result of this run, obtained at
generation 302 and simplified by hand. This result exhibits elements
of modularity even though it used only a minimal subset of Push’s
code-manipulation instructions and only one instruction — the modi-

112 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

fied QGATE.MEASURE instruction — that triggers recursive execution of
code on the CODE stack. For example, the same angle appears twice as an
argument to U-THETA, even though there are no duplicate floating point
literals in the evolved Push program, and the final QGAME program
includes three HADAMARD gates even though the evolved Push program
contains only two instances of QGATE.HADAMARD.

This algorithm calls the oracle on a qubit in a superposition of |0〉
and |1〉 and then, after an additional Hadamard transformation of the
qubit used as the input (and which was affected by the “back action” of
the oracle), performs an intermediate measurement of the input qubit.
Regardless of the result of this intermediate measurement, the final mea-
surement is made on qubit 1 (as was specified in the embryo), but in one
case qubit 1 is transformed, using copies of gates that appeared earlier
in the algorithm, prior to the final measurement.

The maximum probability of error for this algorithm is 1
10 , while clas-

sical algorithms necessarily have a probability of error of at least 1
6 . The

existence of quantum algorithms with a maximum probability of error
of 1

10 was first discovered by genetic programming.
The AND/OR problem extends the OR problem to a larger oracle

and to a more complex logical property. In this problem we are asked to
determine if the cases for which the 2-qubit oracle flips its output qubit
satisfy the logical formula (I00 ∨ I01) ∧ (I10 ∨ I11), where ∧ is the AND
function. This formula is illustrated as an “and/or tree” in Figure 8.10.
In the notation used for QGAME’s TEST-QUANTUM-PROGRAM function,
the cases that we use to assess fitness are:

(((0 0 0 0) 0)

((0 0 0 1) 0)

((0 0 1 0) 0)

((0 0 1 1) 0)

((0 1 0 0) 0)

((0 1 0 1) 1)

((0 1 1 0) 1)

((0 1 1 1) 1)

((1 0 0 0) 0)

((1 0 0 1) 1)

((1 0 1 0) 1)

((1 0 1 1) 1)

((1 1 0 0) 0)

((1 1 0 1) 1)

((1 1 1 0) 1)

((1 1 1 1) 1))

Evolved Quantum Programs 113

Figure 8.10. An AND/OR tree describing the nature of the AND/OR oracle prob-
lem.

The existence of better-than-classical quantum algorithms for the
AND/OR problem was first discovered by genetic programming. The
first evolved programs for this problem (which were also evolved using
LGP and a predecessor to QGAME) are presented, along with a com-
plexity analysis, in (Spector et al., 1999a) and (Barnum et al., 2000).
Here we present a program equivalent to the best of these that was
evolved more recently using PushGP and QGAME, with the same pa-
rameters as those used for the run on the OR problem above (Tables
8.10, 8.11, and 8.12); only the fitness cases and the size of the embryo
were changed.

The evolved quantum program, a hand-simplified version of which is
shown in Figure 8.11, has a maximum probability of error of 0.28731. By
contrast the best that can be achieved by a probabilistic classical pro-
gram is an error probability of 1

3 . Like the solution to the OR problem
above, this algorithm works by calling the oracle on inputs in superposi-
tion and by subsequently performing intermediate measurements on the
input qubits, which will have been affected by the back action of the
oracle call. The final measurement is again made on the oracle’s output
qubit, but only after additional transformations to the output qubit that
are conditional on the intermediate measurements.

It is also noteworthy that the Push program that produced this so-
lution contained only one instance of QGATE.MEASURE, meaning that the
multiple-measurement solution resulted from the use of the use of Push’s
code-manipulation instructions, only a minimal subset of which were in-
cluded in this run.

It is natural to ask how these algorithms, both for the OR problem
and for the AND/OR problem, can be scaled up to larger problem in-

114 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

2

H

1

0

f
U(7π/4) H

1

0

H

U(0.07491)

H
1

0

U(5.4205)

Figure 8.11. A gate array diagram for an evolved solution to the AND/OR oracle
problem. The gate marked “f” is the oracle. The sub-diagrams on the right represent
the possible execution paths following the intermediate measurements.

stances. Unfortunately, simple concatenations of the evolved algorithms
do not suffice for this purpose. It is possible, however, that solutions
to larger problem instances may be discovered through future genetic
programming runs, and that the principles by which these algorithms
can be scaled up can subsequently be inferred.

5. Gate Communication Problems
This section describes several problems that emerged from explo-

rations of the relations between the communication and entanglement-
generation capacities of certain quantum gates (Spector and Bernstein,
2003; Bennett et al., 2004). These explorations involved several iterative
cycles of problem formulation, genetic programming, and human analy-
sis. All of the genetic programming runs used PushGP, QGAME, and
techniques similar to those described above. Due to space limitations
the details of the many individual runs will not be presented here, except
for the few novel features introduced specifically for these problems.

118 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Alice

B
S

π
—
4

1

0

Bob

H

Entangle

H

H

Figure 8.14. A gate array diagram for an evolved protocol for communicating one
classical bit through a BS(π

4
) gate in the context of prior entanglement. The

entanglement-generating gates, to the left of the vertical bar, were included in the
embryo to which the developmental process was applied.

6. Significance of These Results
Most of the results presented in this chapter demonstrate the human

competitive nature of genetic and evolutionary computing technologies.
A few also demonstrate the production, via genetic programming, of gen-
uinely new knowledge with respect to the nature and power of quantum
computing.

What is meant by “human competitive” in this context? John Koza
and his colleagues have developed a list of eight criteria for the assertion
of human competitiveness of results produced by intelligent technologies
(Koza et al., 2003). These criteria are expressed relative to measures
that are commonly employed to assess human contributions to scien-
tific and technological research and development, such as patents and
publications in reputable, peer-reviewed scientific journals. The criteria
all focus on properties of the results themselves, not on their automatic
production by computer systems.

Several of Koza’s criteria apply to the results presented in this chapter.
Two that are particularly helpful in assessing the significance of these
results are the following:

B: The result is equal to or better than a result that was accepted
as a new scientific result at the time when it was published in a
peer-reviewed scientific journal.

Evolved Quantum Programs 119

Alice

3

2

BobEntangle

B
S

π
1

0

Cphase(π)

U(7π/4)

H

Figure 8.15. A gate array diagram for an evolved protocol for communicating two
classical bits through one application of a BS(π) gate in the context of prior en-
tanglement. This is a form of quantum superdense coding re-discovered by genetic
programming. The entanglement-generating gates, to the left of the vertical bar, were
included in the embryo to which the developmental process was applied.

D: The result is publishable in its own right as a new scientific result—
independent of the fact that the result was mechanically created.

All of the results in this chapter, with the exception of the result for
the scaling Majority-ON problem, meet criterion B. The results for the
OR, AND/OR, and gate communication problems also meet criterion D,
as established by publications in physics venues (Barnum et al., 2000,
Spector and Bernstein, 2003).

The solution to the 1-bit Deutsch-Jozsa (XOR) problem appears sim-
ple in retrospect, but one must remember that this surprising and power-
ful effect went unnoticed for the first 60 years following the development
of the underlying quantum mechanics. And even now it is counterintu-
itive to most people. It is true that much of the intelligence behind this
result lies in the human discovery that the problem was worth posing in
the first place, but the steps from the problem statement to a solution
are nonetheless non-trivial. The fact that genetic programming can pro-
ceed automatically to a solution when provided only with the problem
statement and a generic set of quantum gates is therefore significant.

Similar comments apply to the result for Grover’s database search
problem. Although a human being (Lov Grover) was responsible for the
insight that quantum computers could outperform classical computers
on this problem, the production of a better-than-classical quantum algo-

120 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

rithm for the problem is nonetheless difficult and represents a significant
achievement for an automatic programming system. It is also notewor-
thy that the first time this result was produced by genetic programming
it exceeded the expectations of the person performing the experiment
(the author of this book), who had naively assumed that the

√
n im-

provement would allow only for a two-oracle-call solution. Although the
zero-error, single-call solution added nothing to the state of the art in
quantum computing, its possibility was news to the designer and user
of the automatic quantum computer programming system (who was at
that time new to the field of quantum computing). This is important
because it demonstrates that the system can produce knowledge beyond
that possessed by the system designers or users.

The results on the OR and AND/OR problems were published in
Journal of Physics A: Mathematical and General on the strength of their
contributions to the theory of quantum computing, not on the basis of
their production by mechanical means. Although the article does briefly
describe the genetic programming methodology that produced the re-
sults, neither the article’s title nor its abstract mention how the results
were produced. The novel methodology by which these results were pro-
duced would probably not, by itself, warrant publication in this partic-
ular journal, which routinely publishes articles on quantum complexity
theory but not on the design of automatic programming systems. The
fact that these results were published in a high-quality, peer-reviewed
physics journal demonstrates that the approach to automatic quantum
computer programming described in this book can produce new scientific
results that are on par with those produced by human scientists.

The result on the Scaling Majority-ON problem is of more limited
significance; it serves only to demonstrate how genetic programming can
be employed to find scalable solutions to problems that have instances
of various sizes. But the result itself is not better than classical, and it
is also fairly obvious. It is significant only insofar as it points the way to
more ambitious applications of genetic programming to other problems
in the future.

Several of the results on classical communication via particular quan-
tum gates are new scientific contributions, significant independent of the
means by which they were produced. Evidence for this is their publica-
tion in the Proceedings of the Sixth International Conference on Quan-

tum Communication, Measurement, and Computing. It is also notewor-
thy that in this case the genetic programming system was employed in
a role similar to that of a scientific colleague. The system was used first
to investigate a particular question (“Can classical information be trans-

Evolved Quantum Programs 121

mitted via a SMOLIN gate?”) but its result (“Yes”) was not the end of the
story; the details of the result inspired a round of human analysis and
the production of new questions for the system. Results of the runs on
these secondary questions have led to further analysis and insights. This
work is ongoing and additional publications in the physics literature are
expected in the future (Bennett et al., 2004).

