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Abstract

The paper deals with a class of image filters in which the
evolutionary approach consistently produces excellent and
innovative results. Furthermore, a method is proposed that
leads to the automatic design of easily testable circuits. In
particular we evolved ““salt and pepper” noise filters, ran-
dom shot noise filters, Gaussian noise filters, uniform ran-
dom noise filters, and edge detectors.

1. Introduction

The evolutionary circuit design and evolvable hardware
represent alternative approaches to the classical engineer-
ing design [4, 11]. The classical design is based on de-
tailed analysis of a given problem, mathematical models,
top-down decomposition, and abiding by the rules. In case
of the evolutionary circuit design a designer is to define a
set of programmable elements, specify the number of circuit
inputs and outputs, design representation and genetic oper-
ators and express the desired behavior in terms of fitness
function. Then an evolutionary algorithm [5] is responsible
for the rest of the work.

It has been shown experimentally that the evolved cir-
cuits can compete with the conventional circuits in terms
of quality and the implementation cost. If a target appli-
cation is chosen carefully then the evolutionary design can
produce excellent circuits that are quite beyond the scope of
conventional engineering approaches [8, 17].

Scalability of representation and circuit verification are
primary problems of the evolutionary circuit design. The
circuits evolved so far are relatively small and simple de-
vices in comparison with that circuits developed by engi-
neers routinely. Hence it is inescapable to insert a lot of
domain knowledge to the evolutionary algorithm in order to
evolve more complex circuits and to outperform a random
search. In evolvable hardware the knowledge usually takes
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a form of functional level representation [9], incremental
evolution [18] or a developmental process [3].

Similarly to evolution of 1D signal filters, the evolution-
ary design of image operators and filters belongs to the cat-
egory where evolvable hardware is quite successful as seen
in a number of research reports [2, 6, 10, 13, 14]. Note that
the image operators are not trivial circuits. For instance, the
circuits—utilizing eight neighboring pixels to filter the pixel
values in gray-scaled images (eight bits per pixel)—have 9
x 8 = 72 inputs and 8 outputs. We have recognized these
operators (i.e. so-called 3 x 3 image operators) as a class
of circuits where evolution beats engineering approaches in
terms of quality as well as implementation cost very often.

The objective of this paper is twofold. First, we will
show that the evolutionary approach consistently produces
excellentand innovative circuits for that class of filters. Sec-
ond, we will also show that some additional requirements
can be added into the evolutionary process in order to ob-
tain the circuits with specific features. In our case we will
evolve such the circuits that are not only innovative but that
are also easily testable inherently. From our point of view a
circuit is easily testable if each of its elements can be tested
separately without any specialized datapath using its pri-
mary inputs and outputs only. Note that testability is an im-
portant feature of circuits especially when the circuits have
to be produced in large series or when we need to diagnose
the circuits at a given working place (e.g. in space).

The paper is organized as follows. Second section de-
scribes the experimental framework for the evolutionary cir-
cuit design. The elementary principles of the design for
testability by means of i path concepts are introduced in
Section 3. In Section 4 the evolved easily testable filters
are presented. They are also compared with conventional
filters and with those evolved filters where no requirements
on testability have been specified. Features of the obtained
filters are discussed in Section 5. In particular, an example
of application of the test is proposed. Finally, conclusions
are given in last section.
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Figure 1. An array of CFBs is configured to
operate as an image filter

2. Experimental Framework

In order to evolve a single filter (digital circuit), which
suppresses a given type of noise, we need an original image
to measure the fitness values of candidate filters. The gen-
erality of the evolved filters (i.e. whether the filters operate
sufficiently also for other images of the same type of noise)
is tested by means of a test set.

Every image operator will be considered as a digital cir-
cuit of nine 8bit inputs and a single 8bit output, which pro-
cesses gray-scaled (8bits/pixel) images. As Fig. 1 shows
every pixel value of the filtered image is calculated using a
corresponding pixel and its eight neighbors in the processed
image.

We approached the problem using Cartesian Genetic
Programming (CGP) operating at the functional level. In
contrast to the conventional CGP [8]—where gates and 1
bit connection wires are utilized—Configurable Functional
Blocks (CFBs) and 8bit datapaths are employed [13]. Our
model of the reconfigurable circuit consists of 2-input CFBs
placed in a grid of n. columns and n, rows. Any input
(of each CFB placed on the leftmost two columns) may be
connected to the primary circuit inputs. Any input of each
CFB may be connected to the output of a CFB, which is
placed anywhere in the preceding (usually two) columns.

Table 1. A list of functions that were tested
in CFBs. The inputs z and y and the outputs
operate over 8 bits. Symbols used: >> right
shifter, << left shifter, A binary AND, V binary
OR, @ binary exclusive-OR, + 8bit adder, +°*
8bit adder with saturation, z is a binary nega-
tion of z

0 |z>>1 1 |z>>2

2 |z>>4 3 |z

4 | z<<1 5 |z<<2

6 | r<<4 7 | (z<<4)V(z>>4)
8 |0 9 |33

10 | FF 11 |za@y

12 | CC 13 | Maz(z,y)

14| (ze+y+1)>>1 15| zVvy

16 | zAy 17 | (x AOF) V (y A FO)
18 | (zACC)V (yA33) | 19 | (xAAA)V (y A5D)
20| z+y 21 | (z4+y) >>1

22 | xVy 23 |z Ay

24 | A 25 | ZAy

26 | zDy 27 | zVy

28| zdy 29 | zVy

30| (z+y)>>1)+1 |31 |z

2| z+°%y 33 | Min(z,y)

Any CFB can be programmed to realize one of functions
taken from Table 1. We have tested various combinations
of the functions in CFBs during the experiments; a particu-
lar combination will be denoted F.

Similarly to conventional CGP [8], only a very simple
variant of the evolutionary algorithm has been developed.
Population size is 16. The initial population is generated
randomly, however, only function “21” (see Table 1) is pref-
ered. The evolution was typically stopped (1) when no im-
provement of the best fitness value occurs in the last 50000
generations, or (2) after 500000 generations. Only muta-
tion of two randomly selected active CFBs is applied per
circuit. Four individuals with the highest fitness values are
utilized as parents and their mutated versions build up the
new population.

The design objective is to minimize the difference be-
tween the filtered image and the original image. We chose
to measure mean difference per pixel (mdpp) since it is easy
for hardware implementation. Let « denote a corrupted im-
age and let v denote a filtered image. The original (uncor-
rupted) version of » will be denoted as w. The image size
is K x K (K=256) pixels but only the area of 254 x 254
pixels is considered because the pixel values at the borders
are ignored and thus remain unfiltered. The fitness value of
a candidate filter is obtained as follows: (1) the circuit sim-
ulator is configured using a candidate chromosome, (2) the



circuit created is used to produce pixel values in the image
v, and (3) the fitness value is calculated as

K-2K-2

fitness = 255.(K = 2)° = >~ > |v(i, ) — w(i, j)|-

3. Evolution of Easily Testable Filters
3.1. Fault-Tolerant Circuits and Diagnostics

Evolvable hardware has already been considered as a
tool for the design of inherently fault-tolerant circuits. Let
us suppose that the evolutionary algorithm is responsible
for the adaptation of a target system. Then in case of a
faulty event (some circuit’s elements are damaged), the evo-
lution could find a satisfactory circuit using the remaining
elements of a given reconfigurable device. Furthermore,
a number of requirements—such as the environmental con-
ditions under which the circuit must operate for some mini-
mal lifetime at a given minimal failure—can be tested in the
fitness function [17].

As far as a producer manufactures large series of cir-
cuits, the testability of the circuits becomes crucial issue
from a business viewpoint. It is a well-known paradigm of
the modern circuits design that the testability issues must
be reflected already in the design time of a circuit and that
the structure of the circuit is modified in order to make the
circuit testable. A number of strategies for the “design for
testability” have been developed, for instance, BIST, scan
techniques, test point insertion and so on [16, 7].

In our case the requirement on testability will not be in-
cluded into the fitness function; rather, only such a repre-
sentation of the problem that ensures testability will be em-
ployed. We identified that the image operators introduced in
the previous sections are suitable for the proposed approach.
The method is based on three observations. An operator is
easily testable if (1) an output register is connected to ev-
ery CFB, (2) all the functions supported in CFBs have got
so-called i-mode, and (3) CFB’s inputs are not connected
to the same data source. Note that all filters use the CFBs
with output registers even if testability is not supported at
all. The registers are utilized in order to allow pipelining
and their clock signals must be controllable from primary
circuit inputs. Then no additional circuits and datapaths are
needed to ensure testability and any test might be performed
using only primary inputs and outputs of the circuit.

3.2. i path concept

When a circuit element is tested, the test patterns must
be applied to all its inputs. Then the responses to these pat-
terns are picked-up at the outputs of the tested element. If

each element is tested separately, a problem of diagnostic
data transport arises. It must be defined beforehand which
path will be used to transfer the test pattern from outside
the circuit to the tested element input (and similarly for re-
sponses). In order to ensure the testability of a circuit, all
inputs of all circuit elements must be controllable apart and
all output ports of all output elements must be observable
apart. The concepts of observability and controllability be-
long to the traditional approaches in diagnostics.

In this paper, the i path (identity path) concept is applied
[1]. It means that i paths from some primary inputs to all
inputs of all tested elements must be identified and also i
paths from all outputs of all tested elements to some pri-
mary outputs must be identified. The concept is as follows:

Element e1 with input port 2 and output port y is said to
have an identity mode (i mode) if 1 has a mode of operation
in which the data on port z is transferred to port y without
being modified. Similarly, there is an identity transfer path
(i path) from output port y of element el to input port z of
element e3, if the data at port y can be transferred to port z
without being modified. Thus two ports of some elements
are in i path relation when this i path exists.

In our case a CFB can be described by the formula f
such that ¢ = f(a,b) (see Table 1). A specific situation
appears when b can be found for which ¢ = a. Then we say
that the CFB is transparent for input data in at least one of
its operational modes. A simpler situation from an i path
setting point of view appears if b is a control input. The
control inputs are generated by a test controller, therefore it
can be stated that element transparency can be guaranteed
by the test controller. If b is a data input then we denote such
a situation as the data dependent transparency. It is evident
that this mode can be utilized to transfer data (without being
changed) from inputs to outputs of the circuit (however a
“proper” value must be loaded to b input). As an example a
two input adder can be considered. If b input is set to 0 then
g output is equal to a.

On the basis of these requirements, some characteristics
of testable circuits can be formulated:

e Each element must have one or more i modes of opera-
tion such that i paths from all inputs to the output must
exist.

e Each input of each element must be controllable sep-
arately, i.e. no inputs of an element can be connected
together.

To assure that the diagnostic data can flow through a
CFB, both its inputs must be controllable. From our point
of view, each input of each element must be controllable
from primary inputs. Because wires are always transparent,
the main problem of controllability lies in i modes of the
CFBs. Hence we suppose that all CFBs have got i modes
which enable us to transfer diagnostic data from any input
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Table 2. A list of functions implemented in
CFBs for the design of easily testable circuits

No | ID | function i mode if
0 22 | xzVy y=0

1 23 |z Ay y=FF

2 26 | zdy y=0

3 20 | z+y y=0

4 32 | z+%y y=0

5 |21 | (z4+y)>>1|y=X

6 13 | Max(z,y) y=0

7 33 | Min(z,y) y =FF

to any output. We also assume that the result of the evolu-
tion is a pipelined structure of n. stages where every stage
contains a register. No feedback is allowed. In that case, all
nodes (and all registers) in the circuit will be controllable
and all nodes (all registers) in the circuit will be observable.

An example of diagnostic data transfer in a very simple
circuit—which our models in fact operate with—is depicted
in Fig. 2. A request to transfer value z from the input of
element el to the output of element e3 occurs. To fulfill
the request, an i path through both elements must be es-
tablished. As it was mentioned above, the specific values
must be loaded to the second input of these elements. Sup-
pose that it is value a for element el and b for element e3.
Because the second input of element e3 is controlled from
another element e2, establishing of i mode of operation of
the element e2 takes importance too. Note that in order to
control the output of element e3, four inputs of other ele-
ments must be controllable.

The functions we chose as the suitable building blocks
for the evolutionary design are given in Table 2. We can see
that each of them has got i mode of operation.

4. The Evolved Filters

This section reports the best image filters and operators
we have evolved using the setting defined in Section 2 (it
is referred to as Phase | in this paper) and the best easily
testable image filters and operators we have evolved so far
(Phase I1). Every subsection contains a table summarizing
the results. Its first part is devoted to the conventional fil-
ters; the second part reports the filters evolved in Phase I;
and the third part shows the easily testable circuits evolved
in Phase Il (these filters are denoted as FET). The filters
were evolved using various setting of CGP parameters. In
Phase Il the CFBs have supported only functions listed in
Table 2. Values “n.” determine the number of columns of
CFBs utilized in CGP (n,. is always 4).

Some of the filters from Phase | have already been re-
ported in [13, 14, 12]—here they are included only for the
comparison. The evolved filters are also compared with
typical conventional filters and operators such as the me-
dian filter (denoted as FME) and the averaging using vari-
ous weights of coefficients. See, for instance, 3 x 3 kernel
of FA4 filter that employs only the multiples of 2.

FA4 = 1
16

1 2 1
2 4 2
1 2 1

Note that FME is an easily testable filter since it con-
sists only of Max and Min elements. FAA4 filter is not easily
testable because of shifters that are needed to perform multi-
plication. Note that the filters contain the registers allowing
pipelined execution.

Most of the filters were described by means of VHDL
and synthesized into Xilinx FPGA XC4028XLA to obtain
their implementation cost (the number of equivalent gates
denoted as “EqG” in the tables). Some of the evolved fil-
ters contain introns. Hence the initial number of CFBs and
the number of CFBs after manual optimization (introns re-
moval) are also included in the tables (in columns “CFB”
and “Opt™). The “nsy” stands for not synthesized yet and it
denotes the filters we have not considered as interesting for
the synthesis at the moment. However, their “EqG” can be
estimated easily. If a CFB is not a simple logical function
(i.e. it is Max, Min, addition, average etc. equipped with a
register) then the CFB costs about 150 equivalent gates.

We have utilized Lena image (256 x 256 pixels) in the
fitness calculation. The best evolved filters were tested on
various images and they seem to be general enough. Note
that Lena image offers 64516 “training pixels” in our case.
Some images are depicted in Fig. 10. The values “mdpp”
that are included in the tables are valid only for Lena image.
The generation in which a given filter has been detected is
put in column “gnr”. The filter that produces lowest mdpp
is typed in bold in a given table. If a figure shows a filter
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Figure 3. F57 and RA3P5 evolved in Phase |

evolved in Phase | then the functions in CFBs are numbered
according to Table 1, otherwise according to Table 2.

4.1. Salt and Pepper Noise Filters

“Salt and pepper” noise (see Fig. 10A) in which 5% of
pixels are randomly set up to 0 (black) or 255 (white) values
is traditionally suppressed by means of median filter FME.
Although visual quality of the images produced by FME is
relatively good, FME modifies all the pixels independently
of whether they are corrupted or not. As the result, the im-
ages are a little bit smudged (see Lena’s hair in Fig. 10B).
It is also the reason why FME’s mdpp is worse than mddp
of the evolved filters. A computationally cheaper ad hoc
solution for “salt and pepper” noise—which, unfortunately,
does not remove all the “salt and pepper”—utilizes only a
simple i f -t hen- el se function checking an occurrence
of 0 or 255. The filter replaces any corrupted pixel by one
of its neighbors. The filter (denoted as FIF) could operate,
for instance, according to the formula:

o u@-1,y)
U(Zaj) _{ U(Z,])

when u(i,j) =0 or 255,
otherwise.

Hence the objective is to evolve a filter that modifies the
corrupted pixels only.

A number of interesting filters have been evolved. The
F57 filter employed the following functions in CFBs: F' =
{0,1,...,29}; the other filters of Phase | employed F' =
{0,1,3,4,5,7,8,10,...,24,26,27,28,32,33} (according
to Table 1). F57 filter produces the images very similar to
the FIF’s output. Fig. 10C shows that some pixels remain
unfiltered. RA3P5 is the best filter we evolved in Phase I.

Table 3. “Salt and pepper” noise filters.
Filter mdpp | CFB | Opt | EqG | gnr Ne
FME 2.954 | - - 4740 | - -
FA4 9.044 | - - 1397 | - -
FIF 0.782 | - - 129 | - -
F57 1.703 | 8 7 441 | 63763 | 10
RA3P5 | 0.656 | 23 17 | 1702 | 17539 | 10
HF3P5 | 0.746 | 22 16 | 1681 | 17539 | 10
RF1P5 0.726 | 27 21 | 1926 | 18845 | 10
HA1P5 | 1.159 | 14 11 | 1492 | 9314 10
HAS5P5 | 0.940 | 13 12 | 1271 | 16836 | 10
FETO 0.507 | 26 26 | 3656 | 35968 | 10
FET7 0.682 | 24 24 | nsy | 11313 | 10
FET9 1312 | 8 8 nsy | 6757 10
FET12 0.707 | 22 22 | nsy | 8601 10
FETXO0 | 0.379 | 18 17 | 2075 | 122205 | 7
FETX3 | 0.908 | 15 15 | nsy | 5392 7
FETX15 | 0.954 | 11 11 |nsy |33334 |5

FETO

Figure 4. FETO filter

It produces the output images similar to FME, however, its
implementation cost is lower than in case of FME (see Fig.
10D and Table 3). As seen in the same table and in Fig. 10E
FETXO is the best filter we have ever evolved for this type
of noise. Furthermore, its implementation cost is less than
a half of FME’s cost.

4.2. Random Shot Noise Filters

In case of the random shot noise the shots are randomly
generated values instead of 0 or 255. The median filter
works well independently of whether an image contains
random shot noise or “salt and pepper” noise. Similarly
to the previous subsection, we have tried to evolve random
shot noise filters that could compete with the median filter.
Note that FIF filter does not work here at all. The CFBs uti-
lized F = {0,1,3,4,5,7,8,10,...,24,26,27,28,32,33}
(for Phase ).

We have not been able to evolve a filter which removes
the noise completely; some pixels still remain unfiltered.
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Figure 5. FETXO filter contains a redundant
element whose function can be replaced by

its neighbor

Figure 6. FET20 filter and its placement in a

grid of CFBs

Table 4. Random shot noise filters.

Filter mdpp | CFB | Opt | EqG | gnr Ne
FME 2.986 | - - 4740 | - -

FIF 4.366 | - - 129 | - -

FA4 6.614 | - - 1397 | - -

FRS2 1542 | 7 6 948 | 16709 | 10
FRS3 1.612 | 5 5 790 | 9097 | 10
FRS5 1.305 | 27 22 | 2486 | 37435 | 10
FRS6 1.199 | 13 10 | 1422 | 19170 | 10
FRS12 | 1.297 | 12 11 | 1360 | 29028 | 10
FRS13 | 1.176 | 26 25 | 3288 | 28925 | 10
FET30 | 1.081 | 29 29 | 3537 | 51742 | 10
FET32 | 1.191 | 21 21 | nsy | 28781 |10
FET35 | 1512 | 9 9 nsy | 623 10
FET37 | 1.152 | 28 28 | nsy | 71538 | 10
FET38 | 1.175 | 25 25 | nsy | 24381 | 10
FET39 | 1.231 | 20 20 | nsy | 19215 | 10

Table 5. Gaussian noise filters.

Filter mdpp | CFB | Opt | EQG | gnr N

FA4 6.437 | - - 1397 | - -
FME 7.157 | - - 4740 | - -
F24 6.362 | 21 14 | 2128 | 185168 | 10
F20 6.358 | 17 15 | 2626 | 79369 | 10
F21 6.354 | 19 18 | 3028 | 133224 | 20
F23 6.446 | 10 9 1368 | 42772 | 40

HA5G16 | 6.342 | 25 25 | nsy | 14457 | 10
FET21 6.335 | 25 25 | nsy | 79811 |10
FET23 6.243 | 31 31 | nsy | 146539 | 10
FET24 6.358 | 24 24 | nsy | 49561 | 10
FET28 6.312 | 31 31 | nsy | 124206 | 10
FETX20 | 6.367 | 12 12 | 1824 | 144498 | 8

FETX22 | 6.326 | 25 25 | nsy | 153762 | 8

Nevertheless, all the evolved filters are very interesting if
their implementation costs are compared with the cost of
FME filter. FET30 filter is depicted in Fig. 7.

4.3. Gaussian Noise Filters

We have tried to suppress Gaussian noise with a mean
zero and standard deviation of 16. In case of this type of
noise the conventional FA4 filter works well in terms of
quality as well as implementation cost.

In Phase I, filter F24 (see Fig. 8) ranked among the best
filters we have ever evolved and tested using the test set
[13]. F24 consists only of 14 CFBs after manual optimiza-
tion but CGP needed 21 CFBs to ensure the same behavior.
The filters evolved in Phase 11 have shown in average lower
mdpp than all the previous ones, however, their implemen-
tation costs are relatively high. Filters F20, F21, F23, and
F24 were evolved using F' = {0,1,...,29} while we uti-
lized F = {0,1,3,4,5,7,8,10,...,24, 26,27, 28,32,33}
for HA5G16 filter.

4.4. Other Filters

Very similar results have also been obtained for the uni-
form random noise and the block-uniform random noise
[13]. Itis interesting that F23 filter (see Fig. 8) outperforms
FA4 and FME in terms of quality as well as the implementa-
tion cost for the block-uniform random noise. Furthermore,
F23 is an easily testable filter since it consists of elements
“average” (“21” in Table 1) only. A number of extraordi-
nary filters have also been evolved for Gaussian noise with
standard deviation 12, 32, and 40 and for “salt and pepper”
noise with 1%, 3%, and 8% of corrupted pixels [12].
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Table 6. Edge detectors.

Filter mdpp | CFB | Opt | EQG | gnr Ne
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tector) a FET30 (random shot noise filter)
taken from the filter design tool

4.5. Edge Detectors

In order to evolve edge detectors we have in fact tried to
evolve implementations of Sobel operator [15]. In our case
the Sobel operator has been defined as an image filter with
two convolution kernels that are specified as

1 -1 0 1 1 -1 -2 -1
k= 3 -2 0 2 ko = 3 0 0 0
-1 01 1 2 1

Then a new pixel value is calculated according to the
following formula

NewPizel =128 + |k1| + |k2] Q)

Note that Lena image—filtered by means of the Sobel
operator—has been utilized as a target design (Fig. 10F).
Hence mdpp denotes in Table 6 the differences of the im-
ages processed by the evolved operators and the Sobel op-
erator.

The outputs produced by two interesting operators, FS3
and FS7, are depicted in Fig. 10G and 10H. The FS3 op-
erator has been designed with the same CGP parameters as



Figure 9. i path created to test CFB24 in FETX0
filter

F57; the other filters have employed the same parameters as
RA3P5 filter. Note that FS3 has been evolved using another
training image, the “Signs”, in the fitness function.

While the implementation cost of FS7 operator is very
close to the cost of the conventional solution, the imple-
mentation of FS3 is about 30% cheaper than in case of the
conventional Sobel operator (see Table 6). As seen in Fig.
101 and Table 6 the evolved easily testable edge detectors
are very good, however, relatively expensive.

5. Discussion
5.1. Properties of the Evolved Circuits

The circuits evolved both in Phase | and Phase Il ex-
hibit better quality than the conventional circuits (such as
FME and FA4) if mdpp is measured. It holds not only for
Lena image but also for the other images we tested. It is
evident that it can not hold for an arbitrary image. How-
ever, if a class of images is specified for a given application
then the evolved filters are general enough. While the shot
noise filters are based on the elements like Max and Min
(i.e. if-then-else suppression of corrupted pixels), Gaussian
and uniform noise filters perform a sort of “averaging”. The
shot noise filters clearly show that mdpp is not an ideal mea-
sure of visual quality. However, mdpp represents a uniform
approach that might be applied immediately without know!-
edge of type of noise. Furthermore, its hardware implemen-
tation is relatively inexpensive.

It was surprising for us that quality of filters—in terms
of mdpp—is higher in case of the easily testable circuits. It
can be clarified in this way: We restricted in fact the search
space to those circuits whose CFBs do not have the inputs
connected to the same data source and whose CFBs support
only eight functions. And the chosen functions seem to be

Table 7. A test data sequence applied to test
CFB24 in FETXO filter

clk |12 {12 |15 |16 |17 | R9 | R13 | R16 | R24
1 b [FF|a |0

2 0 a b

3 a b

4 a b c

the right ones for our application domain. Especially, Max,
Min and Average are important for successful evolution.

In some cases the evolved circuits require less of equiv-
alent gates than the conventional circuits. It is mainly evi-
dent if an evolved circuit is compared with FME filter. The
circuits evolved in Phase Il contain more CFBs than those
from Phase 1. Unlike Phase I, some of these CFBs can not
usually be removed.

We can conclude that the representation applied in order
to evolve easily testable circuits has led to the occurrence of
higher quality of operators, however, the evolution utilized
all available resources.

5.2. Testability Analysis

As far as all the CFBs employ registers, provide i mode
of operation and their inputs must not be connected to the
same data source, all the circuits that have been evolved in
Phase 11 are easily testable. As an example, Fig. 9 shows
how the CFB with identification 24 can be tested in FETXO0
filter.

Remind that every CFB contains a register—registers
R9, R13, R16, and R24 are emphasized in Fig. 9. The
objective is to transport the values a and b from the primary
inputs to the inputs of CFB»4 and then the output value ¢ to
the primary circuit output. Table 7 contains a sequence that
has to be performed to obtain ¢ in register R24. Because
CFBy operates as Min(16, 15), input 15 is set up to FF in
order to transfer a to R9. Similarly, zero is loaded into 17 in
order to obtain b in R13. Then I1 is utilized to transport a
to R16. Finally, CFB,,4 can be tested and its output is avail-
able in R24. The same approach is applied to “open a path”
from R24 to the primary circuit output and thus to read ¢
and compare its value with a desired vector. Because each
CFB of FETXO0 can be tested in the proposed way, FETXO0
is an easily testable filter.



6. Conclusions

We presented a class of digital circuits in which the evo-
lutionary approach is a really successful design tool. In par-
ticular we evolved “salt and pepper” noise filters, random
shot noise filters, Gaussian noise filters, uniform random
noise filters, and edge detectors.

An open question is whether the idea of the evolution-
ary design of easily testable circuits could be interesting
for some companies right now. It works well for a rela-
tively small class of circuits. However, we could observe
that the requirement on easy-testability was useful for the
evolution—the fitness values have been increasing remark-
ably. Because of this requirement we have learned how
to reduce the design space. The highest quality circuits
that we have ever evolved are recognized as easily testable!
The proposed approach could also be presented as a way in
which fault-tolerant systems could be realized more effec-
tively.
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Figure 10. The images produced by some of
conventional and evolved operators




