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Abstract. This paper describes how we use Genetic Programming (GP) tech-
niques to help project managers find near optimal designs for their project or-
ganizations. We use GP as a postprocessor optimizer for the project organiza-
tion design simulator Virtual Design Team (VDT).  Decision making policy 
and individual/sub-team properties, activity assignments and percentage alloca-
tion for each activity are varied by GP, and the effect on quality and duration of 
the project is compared via a fitness function. The solutions found by GP com-
pare favorably with the best human generated designs. 

1 Introduction and Overview 

In the complex and rapidly changing business environment of the early 21st Century, 
designing an effective and optimized organization for a major project is a daunting 
challenge.  Project managers have to rely on their experience and/or trial-and-error to 
come up with organizational designs that best fit their particular projects. This tradi-
tional method of project organization design is very costly. Based on Tatum’s empiri-
cal research, managers adapt personal experience as the primary process in organiza-
tional structuring. They repeat successes, avoid failures, and make adjustments as 
required by project situation (Tatum, 1983). The Virtual Design Team (VDT) simula-
tion system, based on the information processing theories of Galbraith (1977) and 
March and Simon (1958), was a successful attempt to develop an analysis tool for 
project organization design (Jin & Levitt, 1996).  VDT now enables project managers 
to model and analyze project organizations before implementing them in practice.  
After extensive ethnographic research in engineering organizations to calibrate its pa-
rameters, VDT can predict the schedule, cost and quality performance for a user-
specified organization and work process.  

However, like the analysis tools that support many engineering design processes, 
VDT has no inherent ability to improve or optimize current designs automatically.  
The user must experiment in a “What if?” mode with different alternatives in an at-



tempt to find better solutions that can mitigate the identified risks for a given project 
configuration.  Based on her or his expertise, the user must set up the model, run the 
simulator, analyze the output, make changes to the input, and repeat these steps until 
an acceptable output is achieved.  VDT relies on the expertise of the human user, and 
offers no guarantee of optimality.  The problem has many degrees of freedom, so the 
search space for better solutions is vast, and exploring it manually is daunting.   

In this paper, we demonstrate how we have designed and used a post-processor for 
VDT that uses genetic programming, an evolutionary computing method, to generate 
near optimal project organization designs.  

2 Motivation and Points of Departures 

Over the past 50 years, optimizers have been successfully developed and deployed for 
a variety of analysis tools aimed at predicting the behavior of physical systems such 
as structures, engines, or semiconductors.  These optimizers, in conjunction with ma-
ture and extensively validated analysis tools, have enhanced the productivity of engi-
neers by orders of magnitude, and have expanded the range and enhanced the quality 
of products created in many fields of technology.  In contrast, organizational analysis 
tools that can be used by managers to predict performance outcomes of alternative 
organizational configurations have only begun to emerge over the past decade.  Start-
ing with the Virtual Design Team research in the mid-1990s and the pioneering work 
of Burton and Obel (2004) in the late 1990s, there are now several agent-based com-
puter models and rule-based diagnostic tools that help managers analyze candidate 
organizational configurations for a given set of task requirements and environmental 
constraints.  However, to the best of our knowledge not much work has been done 
that can claim to optimize organization designs for real world organizations. One of 
the attempts we are aware of is a fuzzy multicriteria framework for the comparison of 
alternative organization structures of post corporations (Kujacic & Bojovic, 2003.) 

Some attempts have been made in the past at developing a post-processor for 
VDT; however, those were of limited power and generality.  For example, William 
Hewlett (2000) designed a rule-based “expert system” post processor for VDT that 
analyzes the outputs of a VDT simulation, and recommends small, incremental 
changes in the design of modeled organizations.  Hewlett’s post processor was tested 
in a design charrette on a group of Stanford students; it showed that they were able to 
create better organizations when they used the post-processor than without it.  How-
ever, there were many limitations of this initial post-processor.  First, the post-
processor did not solve for the optimal organization; it was only a small piece of an 
optimization strategy.  It primarily focused on team sizes and suggested reallocating 
personnel between teams.  Thus, after running the VDT simulator, a user had to take 
advice suggested by the post-processor, make changes in the original design, run the 
simulator again, and observe whether the optimization was beneficial.  Then the user 
had to repeat this optimizing loop until the desired output was achieved.  As a result, 
this process was an exhaustive, never ending search.  Second, although this process 
was shown to be beneficial for some students with less project management design 
experience, it provided less benefit for more experienced managers.   



An ongoing research effort by Michael Murray, another PhD student in the De-
partment of Civil and Environmental Engineering at Stanford, is beginning to address 
a few selected aspects of the organization design optimization problem.  The focus of 
Murray’s research, like Hewlett’s, is on the scheduling and resources of the project 
organization.  This optimization tool combines operations research techniques (linear 
programming and branch and bound search) with artificial intelligence techniques 
(constraint propagation (Baptiste et al., 2001) and heuristic search (Cheng & Smith, 
1994)). The tool optimizes the macro resource sizing and scheduling to eliminate the 
most serious backlogs for project participants while respecting project priorities. 
Murray (2002) also conducted a brief investigation of the application of genetic algo-
rithms to engineering design project scheduling problems.   

During the last few years, evolutionary computational methods have been used to 
optimize various kinds of systems in ways that rival or exceed human capabilities.  
For example, GP has produced optimization results for a wide variety of problems in-
volving automated synthesis of controllers, circuits, antennas, genetic networks, and 
metabolic pathways (Koza et al., 2003).  Prof. John H.  Miller (2001) and his group at 
Carnegie Mellon University have done similar work, in terms of evolving organiza-
tions, but for simpler structures than our proposed research.  In their research, they 
show that simple adaptive mechanisms allow for the creation of superior organiza-
tional structures.  In addition, they conclude that, while they do not have proofs of op-
timal structures, the genetic algorithm was designed to solve difficult, nonlinear prob-
lems, and thus the structures that emerge from the algorithm should contain valuable 
hints about optimal form. 

2.1 Virtual Design Team (VDT) 

The Virtual Design Team (VDT) is a project organization modeling and simulation 
tool that integrates organizational and process views of strategic, time-critical pro-
jects. The vision behind VDT is to provide a method and tool to design an organiza-
tion the way an engineer designs a bridge, that is, by first creating and analyzing a 
virtual model, and then implementing the organization that has predictable capabili-
ties and known limits. 

Using VDT a user can develop a case study of his project or projects and run simu-
lations to predict project outcomes. Simulations also identify organizational risks to 
development quality, schedule, and cost. Software simulation helps the user to set up, 
monitor, and troubleshoot a large project or a program of projects successfully. By al-
tering the VDT model components, a modeler can experiment with different solutions 
to determine which one meets his program quality, cost, and scheduling objectives. 

Using VDT’s a graphical interface, project managers design the organizational 
structure—its size, the number of people in the group, and its topology—who reports 
to whom. The project manager also graphically assigns one or more activities for each 
individual within the group, as well as the dependencies between the activities.  

The user sets other organization attributes such as skill levels of each actor (indi-
vidual or subteam) and decision making policies.  The skill level of each actor can be 
set to low, medium, or high. The higher the skill level of individuals, the faster the 
task gets done, and the lower the rate of exceptions generated. Decision making poli-
cies include centralization, formalization and matrix strength. Centralization reflects 



whether decisions are made by senior management positions or decentralized to first 
level supervisor or worker positions. Formalization is the relative degree to which 
communication among positions takes place through formal meetings and memos vs. 
informally. Matrix strength models the “degree of collocation” of the various special-
ists in an organization by setting the probability workers will attend to communica-
tions. The above decision-making policies can also be set to low, medium, or high.  
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Fig. 1. User Interface of the VDT Simulator - Each project participant fills a position in 
the project organizational hierarchy and works on one or more activities. The organizational 
structure and the interdependence between activities define coordination requirements 
among individuals 

Once the above attributes and topologies are set, the Monte Carlo discrete event 
simulation can be run (usually 50-100 trials is sufficient) and the model produces a 
set of output as shown in Fig. 2. The user can then manually adjust the input parame-
ters to obtain the desired output.    

 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Sample VDT Outputs - Gant charts, quality risks, and person backlogs are among 
number of graphical outputs that VDT can produce.  Gant Chart displays project, tasks, and 
milestone in rows with duration-represented bars. Quality Risk shows the task or projects at 
greatest risk of exception-handling failures. actor backlog shows the backlog for each person in 
the model, which indicates predicted overload of positions over time 



3      Statement of the Problem 
 
Once we implemented the first version of our postprocessor optimizer, we applied it 
to a case study that has been used for several years in a project management course 
taught at Stanford. The results produced by our GP were then compared against the 
best solution discovered by student groups and senior project manager groups over 
the last 6 years. In this case study, student and project manager groups are given a 
biotech plant project organization and asked to modify some of the individual/sub-
team attributes and organizational policy structure in order to reduce the project 
schedule duration as much as possible, while maintaining acceptable levels of quality 
risk.  

4 Methodology 

The method used in this paper is similar to what has been used in designing an im-
proved version of Astrom-Hagglund PID controller (Koza, 2003).  Instead of redes-
igning a project organization from scratch, we used an existing design done in the tra-
ditional human generated way and tried to adjust different attributes, so the final 
outcomes of the project could be improved. In order to do this, the genetic transform-
ing tree produces a solution that in fact is an instruction of what, in the given project 
organization, needs to be changed and by how much.  

4.1 The Representation 

The remainder of this section explains the setup for the genetic programming tree and 
how it was used to produce set of solution to the given problem. The standard genetic 
programming tableau appears in Table 1.   

 
Table 1. Tableau for the project organization design optimization problem 

Objective: Find the changes need to be made to the current project or-
ganization  in order to reduce the project simulated dura-
tion, reduce cost and improve quality of the final outcome  

Terminal Set P1, P2, P3, P4, P5, P6, P7, CFM 
Function Set Up, Down, Same, FTE, Assign, Aloc 
Fitness Cases 15 total – 1 for simulation duration, 1 for FTE, 13 for each 

activities 
Raw Fitness SPD + TFTE * FTEW + ∑ (FRIi * FRIWi + PRIi * PRIWi + 

CRi * CRWi)  (see section 4.4 Fitness Evaluation) 
Standardized Fitness Same as raw fitness 
Parameters Population size M = 3000 

Maximum number of generations, G = 100 
Crossover = 90%   Mutation = 3%  Reproduction = 7% 

Success Predict None – search for the shortest simulation duration with the 
given quality and FTE constraints 



4.2 Function and Terminal Sets  

Terminal set P1 through P7 represents actors in the group. CFM stands for Centrali-
zation, Formalization and Matrix Strength. Functions Up, Down, Same can have dif-
ferent meaning depending on the Terminals that they connect to and whether there are 
FTE, Assign or Aloc functions in between. For example, the function FTE increases 
or decreases the number of FTE for each actor depending on the number of Up/Down 
functions preceding it in the genetic Tree. The Assign function assigns an activity to 
an actor, and Aloc specifies percentage allocation for each activity. 

A combination of above function and terminal sets transforms the initial project 
organization suggested by a project manager to a near optimal one.  Figure 3 shows a 
sample of a transforming tree produced by this genetic operation. In this configura-
tion, for example, the skill attributes of P3 (person 3) in the organization structure 
changes based on the type of its parent and grandparent nodes. So, in this case, P3’s 
first skill level (e.g. Project Management) remains the same, her second skill level 
(e.g. Software Engineering) increases, and her third skill level (e.g. Design Coordina-
tion) decreases. In the sample tree below CFM’s parents and grandparents are Same, 
Up, and Down. So, in this case, the genetic program tree suggests that centralization 
should remain the same, formalization should increase by one level, and matrix 
strength should decrease to optimize the overall project outcome.   
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Fig. 3. Sample of a Transforming Genetic Tree.   Program trees created by genetic opera-
tions modify the structure and attributes of a project organization. The genetic tree above tran-
sforms an organization design (not shown here) proposed by a project manager to a near opti-
mal one 

4.3 Genetic Tree Constraints 

Since FTE, Assign , and Aloc functions can only appear next to the bottom of the ge-
netic tree (i.e., Terminal sets should be the only children of them), constraints were 
added to the ECJ parameter files to enforce such limitations. 



4.4 Fitness Evaluation 

In each successive generation, evaluation of the fitness function is calculated on three 
primary inputs. First, the total simulation duration, or number of days to complete the 
project. Second, the quality risk values including communication risk, functional risk, 
and project risk. Third, the total FTEs, since there was a constraint for the maximum 
number allocated to the project. The formula 1 below shows how weighting factors 
are applied to these inputs to calculate the total fitness value. Note that the weighting 
factors are designed such that the fitness function heavily penalizes an increase in 
quality risk or FTEs. 

SPD + TFTE * FTEW +  (FRI∑
=

M

i 1
i * FRIWi + PRIi * PRIWi + CRi * CRWi)     (1) 

Where  
• SPD = Simulated Project Duration  
• TFTE = the Total FTE added  
• FTEW = FTE Weight   ( if TFTE > 3.0 =>  equal 1000 otherwise 1) 
• FRIi = Functional Risk Index for activity i 
• FRIWi = FRI weight for activity i  (if FRIi > 0.5 => equal 1000 otherwise 1) 
• PRIi = Project Risk Index for activity i 
• PRIWi = PRI weight for activity i  (if PRIi > 0.5 => equal 1000 otherwise 1) 
• CRi = Communication Risk for activity i 
• CRWi = CR weight for activity i  (if CRi > 0.5 => equal 1000 otherwise 1) 
• M = maximum number of activities 

4.5 Software/Hardware Used 

The runs reported in this paper were designed based on the standard genetic pro-
gramming paradigm as defined in Koza (1992). The problem was coded in Java using 
the ECJ 10, the Evolutionary Computation and Genetic Programming System by Sean 
Luke. The runs were executed on a PC with a Pentium 4 - 2.8GHz processor.  

5 Results 

We divided our case study experiment into two phases. In Phase I, we defined a sim-
plified GP.  In this process, we varied only the levels of the actors’ skills. Then, we 
compared the results found by the GP with the known optimal solution. In Phase II, 
we kept skill levels constant, and varied the number of Full Time Equivalent FTEs 
(i.e., human resources) added to different positions. We also varied organizational 
policy attributes such as the levels of centralization, formalization and matrix strength 
and the assignment of activities to actors using GP.  We then compared the GP results 
against the best solution found by previous student and manager groups. In the next 
two sections, we discuss the findings of this experiment.  



5.1 Varying Actors’ Skill Levels 

There are seven positions (actors) in this project organization, and each one of these 
positions has two to eight different skills. The skills range from biotechnology to de-
sign coordination to mechanical/electrical, etc. There are a total of 29 skills for all 
seven positions. Each one of these skills can be set to three levels of low, medium, 
and high. Therefore, the total number of combinations that one could try to find an 
optimal solution exhaustively is 329 = 6.8 * 1013. Thus, the sample space is vast and an 
exhaustive search is infeasible. 

It should be obvious that the more skilled the actors, the faster the tasks get done, 
and the fewer the exceptions (i.e., when an actor requires additional information or a 
decision to complete part of a task, or the actor generates an error that may need cor-
recting.).  In this case where we are not concerned about cost, the optimal solution 
would be when the skill levels of all actors are set all to high. Knowing the above 
fact, in one scenario we set skill levels of all actors to “high”, ran the VDT simulation 
and compared the results with the base results where we had the skill levels of all ac-
tors set to “medium”. At the base level, we found that the simulated schedule end was 
March 28, 2001, and when we set all skill levels to “high”, the project duration was 
reduced by 69 days and the simulation showed that the project schedule end would be 
Jan 17, 2001.  Then, we ran the simulation again using the suggested solution by GP 
and we found identical results as when all skill levels were set at high. 

5.2 Varying Actors’ FTEs and Organization’s Policy 

In Phase II, we allowed the GP to vary the assignment of activities to actors, percent-
age allocation for each activity, the Full Time Equivalent’s (FTE) of each actor in 0.5 
FTE increments, and organizational policy properties such as levels of centralization, 
formalization and matrix strength using GP.  

The best individual found by GP in generation 21, and it is shown below in a lisp-
type format: 

 
(Up (Down (Same (Same P5 P4) (Down (Down P1 P5) (Up (FTE 
P0) (Up (Down (Up (FTE P0) (Down P5 P5)) (Up (FTE P1) (Up 
(FTE P0) (Same P3 P6)))) (FTE P5))))) (Up (Same (Same 
(Down (Up (Up (Assign P0) (FTE P1)) (Same (Up (Same (Down 
(FTE P4) (FTE P0)) (Down (FTE P2) (Up (Up P6 (Up (Up P0 
(FTE P1)) (FTE P4))) (FTE P1)))) (Up (FTE P4) (Assign 
P4))) (Up (Up (Up (FTE P5) (FTE P5)) (FTE P4)) (Up (FTE 
P0) (Up (Assign P0) (Same P5 P4)))))) (Up (FTE P5) (Aloc 
P0))) P2) (FTE P0)) (Same (Same (Down (Up (Up (Assign P0) 
(Same P5 P4)) (Same (Up (Same (Up (Assign P0) (Up (Assign 
P1) (Assign P0))) (Aloc P1)) (Up (FTE P4) (Assign P4))) 
(Up (Up (Up (FTE P5) (FTE P5)) (FTE P4)) (Up (FTE P0) (Up 
(Assign P0) (Same P5 P4)))))) (Up (FTE P5) (Aloc P0))) 
P2) (FTE P0)))) (FTE P4)) 
 

Then, we compared the results with the best results obtained by more than 40 
teams of students and managers over the past six years.  



 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4. Comparison of Gant Charts before (Left) and after (Right) Evolutionary 
Process.  GP reduced end date from Feb 20, 2001 to Dec 5, 2000.  This GP solution is 
better than the best solution (Dec 7) found by >40 student and manager teams for this 
problem over the last 6 years 

The best individual found by GP in generation 21 beats the best human-discovered 
solution by 2 days. The best human solution reduced project completion from Feb 20, 
2001 to Dec 7, 2000; the GP-suggested solution reduced the project end date to Dec 
5, 2000. This is shown in Figure 4 above.   In addition the quality risks such as com-
munication risks were improved as shown in figure 5 below. 

 

 

 

 

 

Fig. 5. Comparison of Quality Risks Before (Left) and After (Right) Evolutionary 
Process. Originally 7 out of 14 activities had quality risks higher than acceptable 0.5 
thresholds (orange bars). With the suggested organizational changes, quality risks for all 
activities improved 

6 Discussion of Results 

We compared the solution produced by our genetic programming methodology both 
against the theoretical optimal solution and the best human generated solution. In 
both cases, the results were promising.  

In the first case, as mentioned above, the outcome results found by GP were iden-
tical with the optimal case.  However, interestingly, the suggested solution found by 



GP was not identical to the optimal solution. (i.e., there were multiple solutions that 
yielded identical optimal outcome.)  Unlike the optimal case scenario, GP did not 
have to set all skill levels to “high”. In fact, there were situations where the levels of 
some actors’ skills were reduced from “medium” to “low”, and still the outcome 
matched the optimal solution. For example, the “General” skill of the “Structural De-
sign Sub-team” was reduced to “low”, and the “Mechanical” skill of the “Construc-
tion  PM” was kept at “medium”. This showed that GP could generate different solu-
tions to a problem, so that a project manager can better decide which solutions to 
pick. For example, different solutions suggested by GP could advise that we could 
reduce skill levels of certain actors and increase skill level of others. So the project 
manager has the choice between different alternatives to pick a solution that better fits 
her/his specific project and available resources. 

In the second case, where GP was allowed to vary the number of FTEs added to 
actors, the assignment of activities to actors, percentage allocation for each activity, 
and the policy attributes of the organization project, the solution found by the evolu-
tionary process surpass the best Student/Manager (S/M) solution ever found. The 
number of FTEs and where they were added in GP solution matched exactly the best 
S/M solution. The S/M solution had suggested for swapping two activities between 
two actors. GP solution suggested an additional reassignment of an activity and 
change in percentage allocation of a couple of activities, in addition to the swaps sug-
gested by the S/M solution. Also the S/M solution had suggested increasing both 
formalization and matrix strength by one level, whereas the GP solution suggested 
adding a level only to matrix strength.  

As shown in the results section, GP has been able to improve the final outcome in 
both cases and meet the given constraints. The greatest improvement is seen in the 
project schedule, where the simulated duration was reduced by 77 days, followed by 
substantial improvement in communication, functional and project quality risks.  

We also considered looking at the trend of improvements through different genera-
tions. Figure 6 below shows that the greatest improvement of the best individual fit-
ness value was made between generations 1 and 6 (solid pink line). This figure also 
displays the mean fitness improvements during different generations (yellow dotted 
line). As shown, although the fitness value of best individual is not improved from 
generation 21, the mean fitness value has improved. This means that GP has produced 
more individuals within a generation that match or are near the solution found by the 
best individual. This can be an opportunity for a project manager to select a solution 
that better matches her/his specific project needs.  

Several trials with different population sizes and different mutation and crossover 
rates were made, but these changes did not affect the final outcome significantly. 
Also, in one case, the number of FTE children was changed to two instead one and 
that also did not affect the results greatly.  

Although the transforming genetic tree in its current form was shown to produce 
improved results, it might not be the most efficient. The tight dependencies of func-
tion set FTE, Assign, and Aloc on their preceding nodes can cause some deficiency 
during the crossover operations, where only part of a branch of one individual is 
swapped with another. Another factor is that when the recurrence of actors occurred, 
the very last actor to the right of the tree was used for the skill levels and FTEs. Thus, 
after many generations, the right side of the genetic tree was more active than the left 
side. 
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Fig. 6.  Improvement of Fitness Value Generations 1 Through 30 – Although the best fit-
ness value (solid line) does not improve after generation 21 (best solution found), the mean fit-
ness value is improving. This means there are more alternative solutions that a manager can 
pick among the best solutions 

7 Conclusions 

This research has made successful first steps towards the optimization of project or-
ganization designs. Instead of redesigning the project organization from scratch, a 
human generated design was used as a baseline. Several input attributes such as deci-
sion making policies, individual / sub-team properties, activity assignments, and ac-
tors’ attention allocation—were adjusted using genetic programming to evolve the 
project organization design against a fitness function representing the goals for the 
project.  The effects of the evolutionary process on simulated project duration and 
quality risks were noticeable. We compared the results produced by the GP with 
those generated by humans.  Our GP post processor for VDT beats the best human 
trial-and-error performance of > 40 teams for this realistic problem.  

8 Future Research 

This work is only the beginning use of genetic programming in optimizing organiza-
tional designs. Much time on this project was spent on writing the code to translate 
the transforming genetic tree and connecting the results to the VDT simulator. Now 
that the preliminary work is done, the next step is to add different organizational at-
tributes to the genetic operation and see the effect on the final outcome.  The topol-
ogy, communication, and other individual and team properties—such as who reports 



to whom, team experience, and application experience—are some of the other pa-
rameters that could be added to this model. Eventually, the evolutionary post-
processor should be integrated within the VDT model. 
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