
Automated Discovery of Composite SAT Variable-Selection Heuristics

Alex Fukunaga
Computer Science Department

University of California, Los Angeles
fukunaga@cs.ucla.edu

Abstract

Variants of GSAT and Walksat are among the most suc-
cessful SAT local search algorithms. We show that several
well-known SAT local search algorithms are the result of
novel combininations of a set of variable selection primi-
tives. We describe CLASS, an automated heuristic discov-
ery system which generates new, effective variable selection
heuristic functions using a simple composition operator. New
heuristics discovered by CLASS are shown to be competi-
tive with the best Walksat variants, including Novelty+ and
R-Novelty+. We also analyze the local search behavior of
the learned heuristics using the depth, mobility, and coverage
metrics recently proposed by Schuurmans and Southey.

1 Introduction
Local search procedures for satisfiability testing (SAT) have
been widely studied since the introduction of GSAT (Sel-
man, Levesque, & Mitchell 1992). It has been shown that
for many problem classes, incomplete local search proce-
dures can quickly find solutions (satisfying assignments)
to satisfiable CNF formula. Local search heuristics have
improved dramatically since the original GSAT algorithm.
Some of the most significant improvements have been the
result of developing a new variable selection heuristic for
the standard GSAT local search framework. These include:
GSAT with Random Walk (Selman & Kautz 1993), Walk-
sat (Selman, Kautz, & Cohen 1994), Novelty/R-Novelty
(McAllester, Selman, & Kautz 1997), and Novelty+/R-
Novelty+ (Hoos & Stutzle 2000).

In this paper, we consider how new, effective variable se-
lection heuristics could be automatically discovered. First,
we review the known variable selection heuristics, and iden-
tify some common structural elements. We then formu-
late the problem of designing a variable selection heuristic
as a meta-level optimization problem, where the task is to
combine various “interesting” variable-selection primitives
into an effective composite heuristic function. We describe
CLASS, a system that searches for good SAT variable selec-
tion heuristics. CLASS is shown to successfully generate a
new variable selections heuristic which are competitive with
the best known GSAT/Walksat-based algorithms.

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

T:= randomly generated truth assignment
For j:= 1 to cutoff

If T satisfies formula then return T
V:= Choose a variable using some

variable selection heuristic
T’:=T with value of V reversed

Return failure (no satisfying
assignment found)

Figure 1: SAT local search algorithm template

2 Common Structures in Composite Variable
Selection Heuristics

Many of the standard SAT local search procedures can be
succinctly described as the template of Figure 1 with a par-
ticular variable selection heuristic.

We now introduce some terminology to facilitate the
discussion of the common structural elements of Walksat-
family SAT variable selection heuristics throughout this pa-
per.

Definition 1 (Positive/Negative/Net Gain)Given a candi-
date variable assignmentT for a CNF formulaF , let B0 be
the total number of clauses that are currently unsatisfied in
F . LetT ′ be the state ofF if variableV is flipped.

LetB1 be the total number of clauses which would be un-
satisfied inT ′. Thenet gainof V is B1 − B0. Thenegative
gainof V is the number of clauses which are currently sat-
isfied inT , but will become unsatisfied inT ′ if V is flipped.
The positive gain ofV is the number of clauses which are
currently unsatisfied inT , but will become satisfied inT ′ if
V is flipped.

Definition 2 (Variable Age) The age of a variable is the
number of flips since it was last flipped.

The standard heuristics we refer to in the rest of this paper
are the following:
GSAT (Selman, Levesque, & Mitchell 1992): Select vari-
able with highest net gain.
HSAT (Gent & Walsh 1993b) Same GSAT, break ties in fa-
vor of maximum age variable.
GWSAT (Selman & Kautz 1993): With probabilityp, select
a variable in a randomly unsatisfied (broken) clause; other-
wise same as GSAT.



Walksat (Selman, Kautz, & Cohen 1994): Pick random bro-
ken clauseBC from F . If any variable inBC has a negative
gain of 0, then randomly select one of these to flip. Other-
wise, with probabilityp, select a random variable fromBC
to flip, and with probability(1 − p), select the variable in
BC with minimal negative gain (breaking ties randomly).
Novelty (McAllester, Selman, & Kautz 1997): Pick random
unsatisfied clauseBC. Select the variablev in BC with
maximal net gain, unlessv has the minimal age inBC. In
the latter case, selectv with probability(1 − p); otherwise,
flip v2 with second highest net gain.
Novelty+ (Hoos & Stutzle 2000): Same as Novelty, but after
BC is selected, with probabilitypw, select random variable
in BC; otherwise continue with Novelty.
R-Novelty (McAllester, Selman, & Kautz 1997) andR-
Novelty+ (Hoos & Stutzle 2000) are similar to Novelty and
Novelty+, but more complicated (we omit their description
due to space constraints).

Based on the descriptions above, it is clear that these
heuristics share some significant structural (syntactic) fea-
tures:

2.1 Common Primitives

All of the above heuristics combine a number of “selection
heuristic primitives” into a single decision procedure. These
conceptual primitives are the following:

Scoring of variables with respect to a gain metric: Vari-
ables are scored with respect to net gain or negative gain.
Walksat uses negative gain, while GSAT and the Novelty
variants use net gain.

Restricting the domain of variables: Whereas GSAT al-
lows the selection of any variable in the formula, Walksat
and Novelty variants restrict the variable selection to a sin-
gle, randomly selected unsatisfied clause.

Ranking of variables and greediness: The variables in
the domain are ranked with respect to the scoring metric. Of
particular significance is the best (greedy) variable, which is
considered by all of the heuristics. Novelty also considers
the second best variable.

Variable age: The age of a variable is the number of flips
since a variable was last flipped. This historical information
seems to be useful for avoiding cycles and forcing explo-
ration of the search space. Age used by the Novelty variants,
as well as HSAT. Walksat with a tabu list was also evaluated
in (McAllester, Selman, & Kautz 1997).

Conditional branching: In most of the heuristics, some
simple Boolean condition (either a random coin toss or a
function of one or more of the primitives listed above) is
evaluated as the basis for a branch in the decision process.

Compact, nonobvious combinatorial structure: All of
the heuristics can be implemented as relatively simple func-
tions built by composing the various primitives discussed
above. Even R-Novelty, which is the most complex of the
above heuristics, can be represented as a 3-level decision di-
agram (Hoos & Stutzle 2000).

For all except possibly the simplest GSAT variants, it is
difficult to determine a priori how effective any given heuris-
tic is. Empirical evaluation is necessary to evaluate com-
plex heuristics. For example, although there are many pos-
sible heuristics that combine the elements of Walksat (ran-
dom walk, some greediness, localization of the variable do-
main to a single randomly selected broken clause), the per-
formance of Walksat-variants varies significantly depending
on the particular choice and structural organization of these
“Walksat elements”. Furthermore, significant performance
differences between superficially similar local search heuris-
tics can not be eliminated by merely tuning control parame-
ters. See, for example, the comparison of Walksat/G, Walk-
sat/B, and Walksat/SKC in (McAllester, Selman, & Kautz
1997).

3 CLASS: A System for Discovering
Composite Variable Selection Heuristics

How can we discover new, effective variable selection
heuristics? Some existing heuristics were a result of a fo-
cused design process, which specifically addressed a weak-
ness in an existing heuristic. GWSAT and Novelty+ added
random walk to GSAT and Novelty after observing be-
havioral deficiencies of the predecessors (Selman & Kautz
1993; Hoos & Stutzle 2000). However, some major struc-
tural innovations involve considerable exploratory empirical
effort. For example, (McAllester, Selman, & Kautz 1997)
notes that over 50 variants of Walksat were evaluated in their
study (which introduced Novelty and R-Novelty).

It appears that although human researchers can readily
identify interesting primitives (Section 2) that are relevant
to variable selection the task of combining of these primi-
tives into composite variable selection heuristics may ben-
efit from automation. We therefore developed a system
for automatically discovering new SAT heuristics,CLASS
(Composite heuristicLearningAlgorithm for SAT Search).
The main components of CLASS are:
• A minimal language for expressing variable selection

heuristics s-expressions, and

• A population-based search algorithm that searches the
space of possible selection heuristics by repeated appli-
cation of a composition operator.
CLASS represents variable selection heuristics in a Lisp-

like s-expressions language. In each iteration of the local
search (Figure 1), the s-expression is evaluated in place of
a hand-coded variable selection heuristic. To illustrate the
primitives built into CLASS, Figure 2 shows some standard
heuristics represented as CLASS s-expressions (See Ap-
pendix and Section 3.1 for language primitive definitions).

The space of possible s-expressions expressible in our lan-
guage is obviously enormous, even if we bound the size of
the expressions. Furthermore, we currently lack principled,
analytical meta-heuristics that can be used to guide a system-
atic meta-level search algorithm. Therefore, CLASS uses a
population-based search algorithm to search for good vari-
able selection heuristics (Figure 3).

The Initialize function creates a population of ran-
domly generated s-expressions. The expressions are gener-



GSAT with Random Walk (GWSAT):
(If (rand 0.5)

RandomVarBC0
VarBestNetGainWFF)

Walksat:
(IfVarCond == NegGain 0

VarBestNegativeGainBC0
(If (rand 0.5)

VarBestNegativeGainBC0
RandomVarBC0))

Novelty:
(IfNotMinAge BC0

VarBestNetGainBC0
(If (rand 0.5)

VarBestNetGainBC0
VarSecondBestNetGainBC0))

Figure 2: Walksat, GSAT with Random Walk, and Novelty
represented in the CLASS language.

Initialize(population,populationsize)
For I = 1 to MaxIterations
Pick parent1 and parent2 from population

Children = Composition(parent1,parent2)
Evaluate(Children)
Insert(Children,Population)

Figure 3: CLASS Meta-Search Algorithm

ated using a context-free grammar as a constraint, so that
each s-expression is guaranteed to be a syntactically valid
heuristic that returns a variable index when evaluated. The
Pick function picks two s-expressions from the population,
where the probability of selecting a particular s-expression
is a function of its rank in the population according to its
objective function score (the higher an expression is ranked,
the more likely it is to be selected). Thecomposition op-
erator (detailed below) is applied to the parents to generate a
set of children, which are then inserted into the population.
Each child replaces a randomly selected member of the pop-
ulation, so that the population remains constant in size (the
lower the ranking, the more likely it is that an s-expression
will be replaced by a child). The best heuristic found during
the course of the search is returned.

3.1 The composition operator
Recall that GWSAT and Novelty+ were derived by adding
random walk to GSAT and Novelty. This can be general-
ized into a general meta-heuristic for creating new variable
selection strategies: Given two heuristicsH1 andH2, com-
bine the two into a new heuristic that chooses betweenH1

andH2 using the schema:
If Condition H1 else H2

where Condition is a Boolean expression.
We call this thecompositionoperator. Intuitively, this is

a reasonable meta-heuristic because it “blends” (switches

between) the behavior ofH1 and H2 according to some
boolean condition. The special case where Condition is a
randomization function (i.e.,If (rnd< p) then ...) is a
probabilistic composition.

Probabilistic composition has a desirable theoretical prop-
erty. Hoos (Hoos 1998) defines a SAT local search pro-
cedure to be PAC (approximately correct) if with increas-
ing run-time the probability of finding a solution for a sat-
isfiable instance approaches one. An algorithm that is not
PAC is called essentially incomplete. GSAT, Novelty, and
R-Novelty were shown to be essentially incomplete; how-
ever, their performance is significantly improved by adding
random walk, which was proven to make these algorithms
PAC (Hoos 1998). That is, the historical process by which
GWSAT and Novelty+ were generated can be modeled as
an application of probabilistic composition. The composi-
tion operator has the generalization of this formal property:

Property 1 Let H1 and H2 be two variable selection
heuristics. If (without loss of generality)H1 is PAC, then
the composite heuristic(If (rnd p) then H1 else
H2) , which is the result of applying the probabilistic com-
position operator is also PAC for allp > 0. [Proof: follows
from the fact that as long asp > 0, there is a sequence of
coin flips which continues to chooseH1]

Thus, during the discovery process, if we have a heuris-
tic whose major deficiency is essential incompleteness, then
probabilistic composition with any PAC heuristic in the pop-
ulation theoretically removes that deficiency.

The full composition operator used by CLASS takes two
heuristics s-expressionsH1 andH2 as input and outputs the
10 new heuristics to be inserted into the population:

• Five probabilistic compositions of the form(If (rnd
p) H1 H2) , for p=0.1, p=0.25, p=0.5, p=0.75, and
p=0.9

• (OlderVar H1 H2) - evaluatesH1 andH2, and re-
turns the variable with maximal age.

• (IfTabu 5 H1 H2) - Let variablev be the result of
H1. If age(v) is tabu (i.e., less than 5), then evaluateH2.

• (IfVarCond == NegativeGain 0 H1 H2) -
Let v1 be the result ofH1. if NegativeGain(v1) = 0
returnv1, else returnv2, the result ofH2.

• (IfVarCompare <= NegGain H1 H2) -
Let v1 be the results ofH1, v2 the result of H2.
If NegativeGain(v1) is less than or equal to
NegativeGain(v2), then returnv1, elsev2.

• (IfVarCompare <= NetGain H1 H2) - same as
above, but uses net gain as the comparator.

3.2 Evaluating the utility of a candidate heuristic
The Evaluate function in Figure 3 evaluates the utility
of a candidate s-expression on a set of training instances.
We selected the class of hard, randomly generated 3-SAT
problem instances (Mitchell, Selman, & Levesque 1992) as
our training set. First, the heuristic was run on 200 satisfi-
able, 50 variable, 215-clause random 3-SAT instances, with
a cutoff of 500 flips. If more than 130 of these descents



(If (rand 0.5)
(If (rand 0.25)

(IfVarCompare > NetGain
VarBestNetGainBC0
(OlderVar VarBestNegativeGainBC1

VarBestNegativeGainBC0))
(OlderVar (OlderVar

VarBestNegativeGainBC0
(IfVarCond == NegativeGain 0

VarBestNegativeGainBC0
RandVarBC0))

VarBestNegativeGainBC1))
(If (rand 0.1)

(If (rand 0.5) VarBestNetGainWFF
VarRandomWFF)

(OlderVar VarBestNegativeGainBC1
VarBestNegativeGainBC0)))

Figure 4: CH1, a heuristic learned by CLASS

was successful, then the heuristic was run for 2000 sat-
isfiable, 100-variable, 430-clause random 3-SAT instances
with a 4000 flip cutoff. The score of an individual is: (#
of 50-var successes) + (5 * (# of 100-var successes)) + (
1/MeanF lipsInSuccessfulRuns)

Although the purpose of this scoring function design is
to train heuristics on 100-variable problems, the 50-variable
problems serve as a filter that quickly identifies very poor in-
dividuals and saves us from evaluating the large set of 100-
variable problems. Nevertheless, this is a relatively expen-
sive objective function, which can require up to a minute
of computation for some individuals on a 500-Mhz Pentium
III machine (largely due to inefficiencies in our implementa-
tion). We have experimented with using only smaller prob-
lem instances in the objective function, but in preliminary
studies, we found that heuristics generated using only 25
and 50-variable instance training sets did not scale when ex-
ecuted on 100-variable problem instances (this is because
on extremely small problems, it is difficult to distinguish the
performance between mediocre heuristics and good heuris-
tics, so the discovery algorithm receives insufficient bias).

The heuristic CH1 (Figure 4) was the best heuristic dis-
covered in a CLASS run using a population of 300, after
3000 candidate expressions were generated and evaluated.
Another heuristic, CH2 (not shown due to space constraints)
was discovered in a run with population 400 and 5000 evalu-
ations. Both CH1 and CH2 will be empirically evaluated be-
low. Heuristics of similar quality can be reliably generated
in a 5000 evaluation run. However, since each run of CLASS
currently takes several days on a Pentium III-500MHz ma-
chine, we have not yet had the resources to perform a statis-
tically meaningful study of learning algorithm performance.

3.3 CLASS-L: Extensions to the algorithm
In order to improve the quality of the heuristics discovered
by CLASS, we introduced two enhancements, resulting in
the CLASS-L system. Rather than relying on a completely
random initial population to serve as the building blocks of

(If (rand 0.10)
(NovSchema BC1 NegativeGain 0.50)
(OlderVar

(If (rand 0.10)
(IfVarCond == NegativeGain 0

(If (rand 0.25)
VarBestNetGainBC0
(RNovschema BC1

NetGain 0.60))
(If (rand 0.10)

VarSecondBestNegativeGainWFF
(Select2Rank PositiveGain

NetGain)))
(IfTabu age5

(RNovSchema BC1 NetGain 0.40)
(If (rand 025)

VarRandomBC0
VarBestNegGainBC1)))

(IfTabu age5
(RNovSchema BC1 Net 0.40)
(If (rand 0.25)

(NovSchema BC0 Negative 0.45)
(If (rand 0.25)

VarBestNegativeGainBC1
VarBestNetGainBC0)))))

Figure 5: CLH1, a heuristic discovered by CLASS-L

the composed heuristics, it is intuitive to attempt to help
the learning system by providing “good” building blocks.
We therefore added a library of hand-selected s-expressions.
The library is used as follows. CLASS-L still generates
a random population, but in addition, it loads the library
into a separate array. The new CLASS-L selection func-
tion, with probabilitypL, picks an individual from the li-
brary, instead of the population; otherwise, it picks an in-
dividual from the population. Currently, the library con-
sists of 50 s-expressions, including encodings of all of the
standard heuristics (GSAT, GWSAT, all the Walksat variants
in (McAllester, Selman, & Kautz 1997), Novelty, and R-
Novelty), as well as s-expressions which perform poorly by
themselves but were believed to be possibly useful as build-
ing blocks. In addition, we added two new primitives so
that we could compactly represent variants of Novelty and
R-Novelty:

(NovSchema clause gaintype Pnoise) - exe-
cutes the Novelty decision procedure on the given clause
as defined in (McAllester, Selman, & Kautz 1997), using
Pnoise as the noise parameter. Instead of using only net
gain (as done by the version presented in (McAllester, Sel-
man, & Kautz 1997), any gain metric can be used depending
on gaintype. For example, the standard Novelty heuristic is
(NovSchema BC0 netgain 0.5) .

(RNovSchema clause gaintype Pnoise) - simi-
lar to NovSchema, but executes the R-Novelty decision pro-
cess schema. Using CLASS-L, we generated a new variable
selection heuristic, CLH1 (Figure 5) after a 400-population
run which generated 6000 candidate heuristcs.



4 Experimental Results
We empirically evaluated the automatically discovered
heuristics CH1, CH2, and CLH1, using a set of standard
SAT local search benchmark instances. The experimental
design is similar to that of (Schuurmans & Southey 2001).
For comparison, the results of Walksat with noise parame-
ter 0.5, Novelty with a noise parameter of 0.5, and Novelty+
with noise parameter 0.5 and random walk probability 0.01)
taken from (Schuurmans & Southey 2001) are shown in Ta-
ble 1

All of the benchmark instances in this paper were ob-
tained from SATLIB (www.satlib.org). Failure % is the per-
centage of runs which terminated without finding a solution;
flips is the mean number of flips used by the runs which suc-
ceeded.

4.1 Evaluation of Learned Heuristic vs. Standard
Local Search Heuristics

Performance vs. Test instances from Target Distribution
Recall that CLASS uses a training set of 50 and 100 variable
random 3-SAT instances as the training instances during the
learning process. We first evaluated the performance of the
learned heuristics on test instances from the same problem
problem class as the training instances (the 1000 instances in
the uf100-430 benchmark set). To evaluate how the learned
heuristics performed relative to the best hand-coded heuris-
tics on the target distribution, we first needed to find the best
control parameter values for the best standard heuristics. We
tuned R-Novelty by varying the noise parameter at 0.01 in-
crements, and we also tuned R-Novelty+ by varying both
the noise parameter and the random walk parameter at 0.01
increments, and measuring their performance on 100 inde-
pendent runs on the 1000 uf100-430 benchmark instances.
We found that R-Novelty with a noise setting of 0.68 had
the best performance (with a cutoff of 500,000 flips; mean
of 100 runs per instance). As shown on Table 1, the perfor-
mance of CH1 and CH2, which were generated by CLASS,
is competitive with all but the highly tuned R-Novelty(0.68).
CLH1, which was generated by CLASS-L, actually outper-
forms R-Novelty(0.68).

Generalization and Scaling We have already shown that
the learned heuristics are capable of some generalization,
since they performed well on the uf100-430 instances, which
are different problem instances than the problems in the
training set (although they are from the same abstract class
of 100 variable, 430 clause random generate 3-SAT prob-
lems).

Next, we evaluated the learned heuristics (and also the
tuned R-Novelty(0.68)) on benchmarks from different prob-
lem classes to see how well the heuristics generalized and
scaled beyond the test distribution for which they were
specifically trained. As shown in Table 1, CH1 CH2, and
CLH1 scaled and generalized well on larger hard 3-SAT in-
stances from the phase-transition region (uf150, uf200, and
uf250, which are 150-250 variable instances). They general-
ized fairly well to the graph-coloring and All-Interval-Series
instances (flat125, ais6, 8, 10). CLH1 also generalized well
on the planning instances (medium, huge, bwlarge(a-c),

successes flips depth mobility coverage

GWSAT 285 4471 7.998 11.6829 0.00007854

Walksat 902 2151 6.965 14.5036 0.0004819

R-Novelty 987 1101 8.232 23.237 0.001183

CLH1 989 1045 7.892 22.468 0.001249

CH1 958 1624 7.30 18.42 0.000789

CH2 952 1771 7.08 20.505 0.000882

Table 2: Local search characteristics of learned and standard
heuristics (100 instances, 10 runs, cutoff=10000)

and logistics.c), but CH1 and CH2 significantly degraded on
the larger planning instances.

It is important to keep in mind that none of the heuris-
tics (hand-coded or learned) were tuned for these other in-
stances; we present this data in order to show how well the
learned heuristic generalizes relative to the generalization of
the tuned, hand-coded heuristics.

In order to discover heursitics which perform very well
on structured problem instances, it is likely that the train-
ing instances need to be tailored to the target class of struc-
tured instances. Research in the related area of variable
selection heuristics for systematic, Davis-Putnam-Loveland
based SAT algorithms has shown that variable selection
heuristics have various utilities depending on the class of
problems to which they are obtained.1 Nevertheless, the data
shows that traning based on hard random 3-SAT instances
is sufficient to generate heuristics with respectable perfor-
mance on structured problems.

4.2 Local search characteristics of learned
heuristics

Schuurmans and Southey (Schuurmans & Southey 2001)
recently identified several metrics of local search behavior
that were shown to predict the problem solving efficiency of
standard SAT heuristics. Depth measures how many clauses
remain unsatisfied over the course of a run, Mobility mea-
sures how rapidly a search moves in the search space, and
Coverage measures how systematically the search explores
the search space (see (Schuurmans & Southey 2001) for de-
tailed definitions of the metrics). We measured these charac-
teristics for CH1, CH2, and CLH1 on 100 instances from the
uf100-430 benchmarks (uf100-0001 through uf100-0100,
10 runs per instance, 10,000 flips). As shown in Table 2, the
depth, mobility, and coverage characteristics of the learned
heuristics relative to the standard algorithms are consistent
with their performance.

Next, we conducted a large-scale experiment to test the
predictive power of the depth, mobility, and coverage met-
rics on a large sample of heuristics generated by CLASS.
1200 heuristics were chosen as follows: 400 from the pop-
ulation at the end of the CLASS run which produced CH2,
400 from the initial (random) population of the same run,
and 400 from the population at the end of the CLASS-L run

1Unit propagation-based heuristics have been found to be
highly effective for random 3-SAT instances (Li & Anbulagan
1997), while simpler strategies have been found effective for struc-
tured instances (Moskewiczet al. 2001).



Instance Set* Walksat(0.5) Novelty(0.5) Novelty+(.5,.01) R-Novelty(0.68) CLH-1 CH-1 CH-2

fail % flips fail % flips fail % flips fail % flips fail % flips fail % flips fail % flips

uf100(1000) 0 3655 0 3801 0 2298 0 1258 0 1124 0 2112 0 2205

uf150(100) 0.3 14331 0.15 9573 0.03 8331 0 5102 0 4317 0.09 8176 0.02 8777

uf200(100) 2.9 41377 2.5 31794 2.3 28529 2.03 19946 1.67 14533 2.08 19162 2.66 22358

uf250(100) 1.6 41049 2.1 32864 2.2 31560 2.82 23849 1.47 16541 0.96 23578 1.67 28457

medium(1) 0 1167 0 392 0 537 0 332 0 316 0 510 0 525

huge(1) 0 20211 0 11382 0 12419 0 12167 0 6454 0 10901 0 9805

logistics.c(1) 42 332822 2 135382 1 163622 7 152218 0 81306 83 221030 23 203460

bw large.a(1) 0 20336 0 9695 0 10788 0 10151 0 6656 0 10126 0 11803

bw large.b(1) 58 377348 48 343078 53 373001 79 245243 24 186508 72 223377 46 192420

ais6(1) 0 1377 92 460007 0 12031 0 7279 0 1413 0 1001 0 660.96

ais8(1) 0 36499 99 495003 8 169626 16 139036 0 43050 0 24952 0 21559

ais10(1) 37 317323 100 n/a 84 451222 73 259861 60 216420 34 203709.8 31 184884.6

flat125(100) 1.5 74517 3.2 91004 0.8 37408 18.21 125946 4.63 71125 0.94 60219 0.97 41220

Table 1:Performance on SATLIB benchmarks. Each entry is the mean of 100 runs on each instance; cutoff=500,000 flips per run.
* Number in parentheses are the # of instances in each instance set; values for Walksat, Novelty, and Novelty+ are from (Schuurmans &
Southey 2001)

which generated CH2, and. This way, we sought to sample a
wide range of heuristics, ranging from very poor (random) to
good (the population with CH2) to very good (the population
containing CLH1). Each of these heuristics was executed on
100 instances from the uf50-215 (50 variable, 215 clause)
benchmarks from SATLIB (100 runs per instance with cut-
off of 1000 flips). Figures 5 shows the depth, mobility, and
coverage metrics versus the heuristic’s performance (num-
ber of successful runs). There is a very high correlation
between performance and coverage (r=0.89), and weaker
correlations with depth (r= -0.31) and mobility (r=0.138).
The weak correlations between performance and the mobil-
ity metric is caused by the large number of very bad heuris-
tics in the randomly generated subset of heuristics which ex-
hibit extreme reckless mobility. Without the random heuris-
tics, the correlation increased to r=0.30. On the other hand,
the correlation between depth and performance without the
random heuristics was 0.22 (note the change in the sign of
the coefficient). Figure 6 indicates that high coverage seems
to be both a necessary and sufficient characteristic for local
search success on these random 3-SAT instances. Similarly,
for mobility and depth, there is apparently a “correct” range
of values which are necessary, although not sufficient, for
good performance.

5 Related work
Several previous systems have learned to improve the per-
formance of constraint satisfaction systems by modifying
heuristics using what is essentially a heuristically guided
generate-and-test procedure like CLASS. MULTI-TAC
(Minton 1996) adapts generalized constraint-satisfaction
heuristics for specific problem classes. COMPOSER was
used to configure an antenna-network scheduling algorithm
(Gratch & Chien 1996). STAGE (Boyan & Moore 2000) is
a learning algorithm applied to SAT local search. STAGE
uses an on-line learning to adapt its heuristic by predict-
ing objective function values based on features seen dur-
ing the search; in contrast, CLASS is an off-line learning
system. CLASS strongly resembles a genetic programming

(GP) system (Koza 1992). In fact, we can view the CLASS
as a heavily modified GP - specifically, a strongly-typed
(Montana 1993), steady-state GP using only a novel compo-
sition operator. Note that unlike our composition operator,
standard GP operators recombine and modify arbitrary sub-
components of the parents, and do not propagate the PAC
property. Our experiments with implementation of various
GP mutation and crossover operators in CLASS have not
been successful yet.

6 Discussion and Future Work
We have described and evaluated an automated discov-
ery system for finding SAT local search variable selection
heuristics. It is interesting that repeated brute-force appli-
cation of a single operator, composition, to randomly gener-
ated heuristics is sufficient to generate CH1 and CH2, which
are competitive with Walksat and Novelty variants. CLASS-
L, an extension that uses the Novelty schema as primitives,
generated CLH1, which is competitive with the best, tuned
version of the standard local search heuristics on the tar-
get problem class (100-variable random 3-SAT). All three
learned heuristics were shown to scale and generalize well
on larger random instances; generalization to other problem
classes varied.

Despite of the good performance on the benchmarks,
there is a concern that the automatically generated heuristics
might be “getting lucky”, or exploiting some bizarre, hidden
structure of the benchmarks. Measurements of the depth,
mobility, and coverage metrics show that CH1, CH2, and
CLH1 exhibit the characteristics of successful local search
algorithms as identified in (Schuurmans & Southey 2001).
The best learned heuristics seems to descend to promis-
ing regions and explore near the bottom of the objective as
rapidly (low depth), broadly (high mobility), and systemati-
cally (high coverage) as possible, compared to the standard
algorithms. In other words, there is convincing evidence that
the best learned heuristics perform well because they behave
in the way that good local search algorithms are expected to
behave (according to our current scientific understanding of



local search), and not because of some unexplainable ex-
ploitation of the benchmark instances. Furthermore, note
that with a little effort, one can study Figures 4-5 and ob-
serve that the learned heuristics encode ”reasonable” behav-
ior.

Recent algorithms such as DLM (Wu & Wah 1999) and
SDF (Schuurmans & Southey 2001) are significantly differ-
ent from the GSAT and Walksat family considered in this
paper, due to 1) clause-weighting and 2) objective function
metrics that go beyond the simple gain metrics identified in
Section 2. For example, SDF uses a scoring metric based on
the number of variables that satisfy each clause. Such ad-
vances in the building blocks of SAT local search algorithms
are orthogonal to the issue addressed by CLASS, which is
the problem of combining these building blocks into effec-
tive decision procedures. Future work will extend CLASS
with a clause-weighting mecshanism, as well new objective
function metrics (such as the SDF scoring function).

In our current implementation, the learned heuristic func-
tions are slower (execute fewer flips per second) than the
standard heuristics. In principle, learned heuristics based
on primitives which only select variables from a particular
clause should not be much more expensive than Walksat,
and learned heuristics which require maintaining globally
optimal variables should not be much more expensive than
GSAT. This is because in an efficient implementation, the
complexity of a variable flip is dominated by the incremen-
tal computation of gain values, which scales linearly with
the size of the problem (average # of clauses per variable),
while repeatedly accessing these values repeatedly in a com-
plex selection heuristic is a constant overhead, which should
become asymptotically insignificant. In addition, although
there is currently no mechanism in CLASS to bias the sys-
tem for the discovery of faster, simpler heuristics, there is
much that can be done to speed up the learned heuristics. For
example, runtime, size, and complexity could be used as part
of the scoring function for the discovery algorithm. Also,
post-processing optimizations of the heuristics is possible.
For example, in CH1, the single occurrence of the VarBest-
NetGainWFF primitive requires instantiation of the GSAT-
equivalent data structures to identify the globally optimal
variable with respect to net gain, causing significant slow-
down; without this symbol, CH1 would only need Walksat-
equivalent data structures. However, since that primtive is
only called 2.5% of the time (it is called only after 3 layers
of randomization), an optimizing postprocessor could try to
eliminate this kind of bottleneck from the heuristic while
maintaining search efficiency.

Evaluation of 1200 new heuristics generated by CLASS
with respect to depth, mobility, and coverage metrics (Schu-
urmans & Southey 2001) supported the conjecture that these
metrics are widely applicable for analyzing SAT local search
heuristics. In particular, the coverage rate seems to be the
most highly correlated with performance on random 3-SAT
instances. Furthermore, this result indicates that CLASS
could possibly use the metrics (particularly coverage) as a
partial proxy for actual algorithm runs in order to evaluate
candidate heuristics much faster is currently possible.

Local search algorithms are very sensitive to control pa-

rameters (McAllester, Selman, & Kautz 1997; Hoos & Stut-
zle 2000). CLASS currently does not explicitly perform
parameter tuning, although nested probabilistic composi-
tions yields the equivalent in some cases (CH1 obviously
exploits this trick). While we have implemented parameter
tuning, it is currently turned off because in our current im-
plementation, local optimization via control parameter tun-
ing takes just as much computational resources as evaluat-
ing an entirely new heuristic; so far, the tradeoff has favored
broader exploration of the space of structures. However, us-
ing metrics such as those in (Schuurmans & Southey 2001;
McAllester, Selman, & Kautz 1997) as a proxy for complete
runs might enable fast parameter tuning.

While the surprisingly good performance of heuristics
learned by CLASS is interesting, the primary motivation of
this work is to explore an automated approach to the process
of designing composite search heuristics. Humans excel at
finding and classifying the relevant features/components that
can be used to solve problems, such the primitives iden-
tified in Section 2. Note that all of these primitives were
proposed in the literature by 1993, shortly after the intro-
duction of GSAT - variants that used variable age, negative
gain, random walk can be found in (Gent & Walsh 1993a;
Selman & Kautz 1993). However, the task of combining
these features into effective composite heuristics appears to
be a combinatorial problem that is difficult for humans. As
evidence for this, note that Novelty was not introduced un-
til 1997 (McAllester, Selman, & Kautz 1997). We have
shown that this task can be effectively formulated and solved
as a meta-level search problem. SAT local search algo-
rithms have been intensely studied by many researchers for
10 years. The demonstration that a simple mechanical pro-
cedure which composes previously proposed primitives can
compete with some of the best human-designed heuristics
suggests that the problem of designing composite search
heuristics, in general, might benefit from an automated dis-
covery system (especially for problem domains which have
not been as intensely studied as SAT).

Acknowledgments
Thanks to Rich Korf and Jason Fama for helpful discussions.
Finnegan Southey provided valuable clarifications regarding the
implementation of the coverage metric measurements.

References
Boyan, J., and Moore, A. 2000. Learning evaluation functions to
improve optimization by local search.Journal of Machine Learn-
ing Research1(2).

Gent, I., and Walsh, T. 1993a. An empirical analysis of search in
gsat.Journal of Artificial Intelligence Research1:47–59.

Gent, I., and Walsh, T. 1993b. Towards an understainding of hill-
climbing procedures for sat. InProceedings of National Conf. on
Artificial Intelligence (AAAI), 28–33.

Gratch, J., and Chien, S. 1996. Adaptive problem-solving for
large-scale scheduling problems: A case study.Journal of Artifi-
cial Intelligence Research4:365–396.

Hoos, H., and Stutzle, T. 2000. Local search algorithms for
sat: An empirical evaluation.Journal of Automated Reasoning
24:421–481.



2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800 900 1000

D
e
p

th

Score

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800 900 1000

M
o

b
il

it
y

Score

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0 100 200 300 400 500 600 700 800 900 1000

C
o
v
e
r
a
g
e

Score

Figure 6: Average depth, mobility, and coverage rates vs. Score (# of successful runs) for 1200 automatically generated
heuristics

Hoos, H. 1998.Stochastic local search - methods, models, appli-
cations. Ph.D. Dissertation, TU Darmstadt.

Koza, J. 1992.Genetic Programming: On the Programming of
Computers By the Means of Natural Selection. MIT Press.

Li, C. M., and Anbulagan. 1997. Heuristics based on unit propa-
gation for satisfiability problems. InProc. Intl. Joint Conf. Artifi-
cial Intelligence (IJCAI), 366–371.

McAllester, D.; Selman, B.; and Kautz, H. 1997. Evidence for
invariants in local search. InProceedings of National Conf. on
Artificial Intelligence (AAAI), 459–465.

Minton, S. 1996. Automatically configuring constraint satisfac-
tion problems: a case study.Constraints1(1).

Mitchell, D.; Selman, B.; and Levesque, H. 1992. Hard and easy
distributions of sat problems. InProceedings of National Conf.
on Artificial Intelligence (AAAI), 459–65.

Montana, D. 1993. Strongly typed genetic programming. Tech-
nical report, Bolt, Beranek and Neuman (BBN).

Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient SAT solver. In
Design Automation Conference, 530–535.

Schuurmans, D., and Southey, F. 2001. Local search characteris-
tics of incomplete sat procedures.Artificial Intelligence132:121–
150.

Selman, B., and Kautz, H. 1993. Domain-independent extensions
to gsat: Solving large structured satisfiability problems. InProc.
Intl. Joint Conf. Artificial Intelligence (IJCAI).

Selman, B.; Kautz, H.; and Cohen, B. 1994. Noise strategies
for improving local search. InProceedings of National Conf. on
Artificial Intelligence (AAAI).

Selman, B.; Levesque, H.; and Mitchell, D. 1992. A new method
for solving hard satisfiability problems. InProceedings of Na-
tional Conf. on Artificial Intelligence (AAAI), 440–446.

Wu, Z., and Wah, B. 1999. Trap escaping strategies in discrete
lagrangian methods for solving hard satisfiability and maximum
satisfiability problems. InProceedings of National Conf. on Arti-
ficial Intelligence (AAAI), 673–678.

Appendix: Additional CLASS Language
Primitives

List of some CLASS language primitives that appear in Fig.
2,4,5. The actual syntax of the CLASS s-expressions differs
slightly, but we present a simplified version for brevity and
clarity (see Section 3.1 and 3.3 for definitions of some other
primitives).

(rnd num) - true if random numberr < num, else
returns false.

BC0 - randomly selected broken clauses. Note that BC0
refers to the same broken clause throughout an s-expression.
Also, note that the symbol BC1 refers to a different ran-
domly selected clause.

(NegativeGain v) and(NetGain v) returns the
negative gain and net gain of variablev.

VarRandomBC0 - a random variable from broken clause
BC0

VarRandomWFF- random variable in the formula
VarBestNetGainBC0 - variable with the best net gain

in BC0.
VarBestNegativeGainBC1 - var. with best negative

gain inBC1.
VarBestNetGainWFF - the var. with best net gain in

the formula
(OlderVar v1 v2) - picks the var with the max age

from v1 andv2.
(IfNotMinAge varset v1 v2) - if v1 does not

have minimal age among variables in a set of vars then return
v1, elsev2.

(Select2RankWFF gaintype1 gaintype2 ) -
select best variable from formula according togaintype1,
breaking ties usinggaintype2.


